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Chapter I

Introduction

Given an undirected graph G = (N, A) with positive arc weights Ca > 0, a E A and P.

a subset of two or more nodes of N, the Steiner Tree problem on graphs (STG) is to find T, a

connected subgraph of G such that all the nodes of P are included in T and the sum of the

weights of the arcs in T is minimized. Though STG is NP-hard [16] in the general case, there

are some interesting special cases which can be solved in polynomial time. The first two special

cases come from placing restrictions on the size of P. If IP = 2, then STG is just the shortest

path problem, while if we have JP = INI - 1, then STG reduces to the minimum spanning tree

problem. Both of these problems have well known polynomial-time algorithms [26]. The second

class of STG problems which have polynomial-time algorithms comes from restrictions on the

graph G. If G is a series-parallel or Hamlin graph, then we can solve STG in linear time [37].

There are exact solution algorithms for the general case of STG, but as Winter states in his

survey paper [37] ". . . the problem seems to be extremely difficult and only small problem

instances (with up to 30 points) can be solved in less than one hour."

A method of attacking NP-hard combinatorial problems, which has not been generally

exploited in the case of the Steiner tree problem, is that of polyhedral combinatorics. This

method of attack revolves around studying the characteristics of the convex hull of feasible

solutions, trying to identify classes of inequalities that describe facets or high dimensional faces

of this polytope, and then using these facets and faces in an algorithm to speed solution. (See

[12] for an example.) The most common use of these facets is as cutting planes in a linear

programming algorithm, although they can also be used in a Lagrangian relaxation approach

(See [5, 18, 19, 28, 30] for examples of these approaches to the Travelling Salesman Problem).



2

The facet identification method has recently been applied to several other combinatorial

problems including the set covering problem [3, 11], the three-index assignment problem [4] and

the set packing and knapsack problems [28, 29].

The purpose of this research is to study the facial structure of the convex hull of

solutions to STG on complete graphs. The main thrust of the research is to define classes of

facets that have the potential to be used as cutting planes which can then be added to the LP

relaxation of the problem or alternativly incorporated through the Lagrangian approach. The

choice of working with complete graphs is made to facilitate the identification of structures that

give rise to facets, and is not very restrictive, since every undirected graph is a subgraph of a

complete graph.

1.1 Definitions and Notation

A graph G = (N, A) consists of a set of n nodes, N, and a set A of m unordered pairs of

nodes called arcs. If i and j are nodes of the graph and a E A is an arc of G with a = (i, j),

then i and j are called the end nodes of a, a is said to connect or join i and j, and i and j are

said to be incident to a. By convention we will always write (i, j) with i < j.

The cardinality, n, of the node set is called the order of the graph, and if (i, i) E A for

all i and j in N, then the graph is called complete. The complete graph of order n will be

denoted by K,,, and the cardinality of its arc set by

n(n- 1)
2

Since we deal with complete graphs, any numbering assigned to the node set is totally arbitrary,

so we will always assume that P = {1, 2, . . . , p), where p = JP1.

If G = (N, A) with W '_ N and V C A, then the set of arcs that have both end nodes

in W is denoted by A(W) and the set of nodes incident to the arcs in V is denoted by N(V). A
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graph H = (V, E) is a subgraph of G if V C N and E C A(V). If W and V are disjoint subsets

of N, then the set of arcs in A that have one end node in W and the other end node in V will be

denoted by (W, V). We will denote N - W by W, -nd the set (W, W) is called a cut.

A path r from s to t in G = (N, A), where s, t in N, is a sequence of nodes, nil and

arcs, ai = (hi, ni+1 ):

F = s = n1, a,, n,..., n. 1, a , nk =t}.

The nodes s and I are called the end nodes of r, and k is the length of r. If all nodes of F are

distinct, then the path is called simple. If s = t, then the path is called a cycle, and if all nodes

except s = t are distinct, then the cycle is called simple. If there is a path between two nodes i

and j in N, then i and j and said to be connected. If all pairs of nodes in a graph are connected.

then the graph is said to be connected. If V C N, we say that V is connected if (\I, A(V)) is a

connected graph.

A tree T is a connected graph that contains no cycles. Any subgraph of a graph G that

contains no cycles is called a forest of G. A tree that is a subgraph of G and contains all tile

nodes in G is called a spanning tree. Clearly, since all arc weights are positive, the solution to

STG will be a tree that connects the nodes of the set P. Such a tree is called a Steiner tree.

The set P C N of nodes taht we want to connect is called the set of terminal nodes. Any node

in the set S = N - P which is contained in T is called a Steiner node. A leaf or terminal node

I of a tree is a node satisfying d(t) = 1, where d(l) denotes the degree of a node and equals the

number of arcs in the tree which are incident to f. Let L be the set of leaves of a Steiner tree T.

If L C P, then T is called a P-Steiner tree or a P-tree.

In order to examine the facial structure of STG, we need to relate the Steiner and

P-trees of K, to Rm' . To do this let A = {(il, il), ... , (i, j,)m)} Then if 11 = (V, E) is a

subgraph of K., the characteristic or incidence vector of H in Rm ' will be the vector x satisfying



1 if (ij , h) E E
xI =

0 otherwise

The vector x is said to describe or induce the subgraph H on G. The specific ordering of the

arcs that we will use is the following. Arc a = (i, j) will correspond to component Xo(a), where

OW(, M) ( j -- 1)(i- 2)+

2 +

This mapping corresponds to listing the arcs in the order (1, 2), (1, 3), (2, 3), (1, 4), (2, 4),

(3, 4), (1, 5), . . ., etc.. Throughout this dissertation, arc a = (i, j) will be denoted

interchangeably as a or (i, j), and the components of characteristic vectors will be denoted Xa,

xi,j or xo(a). The notation chosen will be clear from the context and will be used to place tile

emphasis on either the arc itself, the end nodes of the arc, or its order in a listing of all arcs,

whichever is appropriate.

Now that we have a relation between a graph G and R', we need to define some of tile

relevant ideas in polyhedral theory. The convex hull of a set of points X- {x=}i in R"' is

the set of all convex combinations of these points:

k k
conv(X) = {x E R-n Ix = rix', a i > 0 and . a i = 1).

A hyperplane H in R' is the set H = {x E R'm <x, y> = a), where y E R m , with y - 0,

a E R and <x, y> is the inner product of x and y. A closed half space H in R m is the set

H' = {x E R' h' <x, y> < a). A polyhedron Q in R' is the set of points satisfying a finite set

of linear equalities and weak inequalities, i.e., the intersection of a finite number of closed half

spaces. If Q is bounded, then Q is called a polytope. A polytope is both the intersection of a

finite number of closed half spaces and the convex hull of a finite set of points.
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A set of points {x'}_ in R' are linearly independent if there is no solution to

k
xAxi = 0

i=1

other than Ai  0, i 1,2,..., k. IfAi =O, i =1,2,..., k is the unique solution to

the system

k

L A iX = 0
i=1

-Ai = 0.

then the points {xi}=lk are affinely independent. Linear independence implies affine indepen-

dence. If the characteristic vectors of a set of trees of a graph are affinely/linearly independent,

then we will say that the trees are affinely/linearly independent.

The dimension of a polytope Q, dim(Q) is k if the maximum number of affinely inde-

pendent points in Q is k + 1. Let H be a hyperplane in Rm , then if Q C Rm is a polytope with

Q C H1, H is said to be valid for Q, and if F = H f"Q 96 0,theii FisafaceofQ. A faceofQ

is also clearly a polytope in R', so it is proper to speak of the dimension of a face. If

dim(F) = dim(Q), then F = Q and F is called an improper face of Q. If dim(F) = 0, then F is

a vertex of Q, and finally, if dim(F) = dim(Q) - 1, then F is a facet of Q. Since a half space

can be represented by an inequality, the inequality describing H, will also be called a facet of Q

equivalently, or will be said to induce (or define) a facet of Q.

If X = {x'J= 1 is a set of k vectors in R', then Xwill denote te I x k matrix whose

columns are the first I components of the k vectors in X. The m x 1 vector of rn l's will be

denoted by em. If A is an m x n matrix, then A will denote the (m + 1) x n matrix
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T.

If the m x n matrix A has rank n, then the columns of A are linearly independent. If A has

rank n, then the columns of A are affinely independent.

Finally, we need some definitions from matroid theory (See for example [14, 26]). Let E

be a finite set, and 3 be a family of subsets of E. Then the structure M = (E, 3) is a matroid if

3 has the following properties.

1) 0 E 3

2) IfI E 3 and J C I, then J E S

3) If I and J are in 3 with III = IJI + 1, then there exists an element c E I - .1 uch

that J U {e} E 3.

A subset I in 5 is called an independent set of the matroid, and a maximal independent set is

called a basis of the matroid. The rank r(V) of any subset V C E is the cardinality of a mnax-

imal independent subset of V.

To relate matroids to the Spanning Tree Problem we will use the well known Forest

matroid [17]. For a graph G = (N, A) let E = A and let 3 be the collection of all forcsts of G.

(Recall that a forest is any subgraph of G that contains no cycles.) M = (A. 5) is a matr oid.

The rank of a set B C A is given by

r(B) = IN(B)l - I

where I is the number of connected components in the subgraph (N(B), B). Spanning trees of G

are the bases of the Forest Matroid.



1.2 Current Work

Several complete characterizations have been given for the polytope of the Spanning

Tree Problem. The first comes from the work of Edmonds [14] in 1971. Edmonds proved thit

for any matroid on a set E, the vertices of polytope described by

E Xe -r(E)
eEE

E x< r(A), for allA C E
eEA

Xe > 0, for all e E A

are the incidence vectors of the bases of M. Since the bases of the Forest Matroid are th. spa;n-

ning trees of G, this will give us a complete linear characterization of the spanning tree poly-

tope. That same year, Fulkerson [15] conjectured that for a graph G = (N, A), the vertices of

the polyhedron described by the inequality system

F, Xa _ (n - 1) - r(V) for all V C A, V closed
aEA-V

Xa > 0 for all a E A

are precisely the incidence vectors of the spanning trees of G, where a set V C A is closed if

there is no cycle of G with IC n (A - V)I = 1. Chopra [8] proved Fulkerson's conjectilre ill

1988. Both of these descriptions are complete, but neither is minimal. In 1977, Grhtsch l 7

gave a complete non-redundant linear characterization of the polytope of the bases of a general

matroid, and then specialized this characterization to the polytope of spanning trees of graplhs.

Grbtschel's linear characterization for complete graphs is
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xa = n-1
aEA

E Xa IW l 1 for allW C N, 2<IWI_ n-i
aEA(W)

Xa > 0 for all a E A.

There has been very little work done on the facial structure of the convex hull of

solutions of STG. In 1980, Aneja [1] formulated STG as a set covering problem in the following

fashion. Let (X, X) be a cut in G such that P f X 6 0 and P 6 X 0. Then the inequality

Z Xa_>l
aE(X,X)

must be satisfied, since any tree connecting the nodes in P must have at least one arc in (X, X).

So the problem could be formulated as a set covering problem, i.e., trying to cover all the cuts

with the arcs. Aneja then presented an algorithm based on the set covering algorithm. Although

the number of constraints is exponential in the order of the graph, the algorithm only used these

constraints implicitly. In 1984, Wong [38] worked with a version of STG on a directed graph,

namely:

Given: A directed graph G = (N, A), P C N, an arbitrary node r in N-P, and arc

weights ca, a E A.

Find: The minimum weight set of arcs that span P U {r) with every arc directed away

from r. (Such a set is called a Steiner arborescence).

Wong formulated this problem as a mixed integer program and developed a dual ascent method

for its solution.

In 1985, Prodon, Liebling and Groflin [32] considered the directed version of STG with

the modification that the underlying graph G be strongly connected, i.e., for every pair of nodes
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i and j there exists a simple path directed from i to j. They formed a strongly connected direct-

ed graph by replacing the arcs (i, j) of an undirected series-parallel graph with the directed arcs

(i, j) and (j, i). They then proved that the extreme points of an unbounded polyhedron formed

by some cut type inequalities from this new graph were the characteristic vectors of the P-trees

(in the directed sense) of this graph. Later that year Prodon [31] extended these results by ron-

structing a polyhedron whose extreme points were the characteristic vectors of the P-trees of an

undirected series-parallel graph in the following manner. Let F(k) = {Vi} .. be any family of

connected subsets of N, such that each member of the family satisfies Vi n P :0 0 and
k

(N - U vi) n P o @. Then define the coefficient ra(F(k)) for each arc a = (i, j ) in A by

{ I Vt E F(k), i 0 V1 , j E V7}
ra(F(k)) = max {I V E F(k), i E V1,j V}

Then the polyhedron defined by

Q = {x E RIAI I ra(F(k)) xa > k for any family F(k)}
aEA

has the characteristic vectors of P-trees of G as extreme points.

Finally, in 1987, Ball, Liu and Pulleyblank [7] studied two-terminal Steiner arbor-

escences in general directed graphs. They noticed that every two-terminal Steiner arborescence

consisted of a directed path from the root node r, to some node p, and directed paths from p to

the two terminal nodes s and t, where p could be one of r, s or t. Defining

dr(p) = the length of the shortest, path from node r to node p,

d'(p) = the length of the shortest path from node p to node s,

d'(p) = the length of the shortest path from node p to node t,



10

for each node p of N, then the solution to the problem is to find that node p that determines

min dT(p) + d'(p) + d1(p).

Ball, Liu and Pulleyblank take this combinatorial algorithm and derive a linear pro-

gramming description of the problem from it using elimination and projection. They then turn

their attention to complete directed graphs and prove, in that case, that every inequality in the

formulation is a facet and therefore necessary.

1.3 Preliminaries

The approach that we have taken to this problem is similar to the general approach

that has been taken for the traveling salesman problem [19], and is also similar to that used by

Balas [2], Balas and Ng [3], and Balas and Saltzman [4] on other combinatorial problems. The

approach is to define polytopes related to the problem, determine the dimension of those poly-

topes, and then study the problem for structures that might yield strong valid inequalities or

facets. Before proceeding we need to prove a few lemmas which we will use throughout the

dissertation.

LemmaI.I. m, + n= m+1

Proof: By definition

Mn + n se 2 in in n 2 shn+ 1t 0

Lemma 1.2: Let Wx )-L, be a set of points in R' such that
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Ax' = b i = 1, 2,.., k.

for some I x m matrix A and I x 1 vector b. If y is an affine combination of the points x', then

y also satisfies

Ay = b.

Proof: Let y = Xa, where X is the m x k matrix whose columns are the vectors xi , and

eT = 1. Then

Ay = A(Xa) = (AX)a = (bek)a = b(eka) = b.

Corollary 1.3. If y is a convex combination of the points x', then

Ay = b.

Lemma .4: Let X = {xij- be a set of points in Rm and Az = b be a system of r inIde-

pendent equations such that

Ax i = b i 1,..., k

Then

dim(conv(X)) < m - r.

Proof: Let Q = {z E Rml Az = b}. Then it is well known that

dim(Q) = m - r [22, 27].

Thus, since conv(X) C Q, by Corollary 1.3, we have that

dim(conv(X)) _ m - r. 0
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All of the proofs in this dissertation will establish that a set of vectors is either linearly

or affinely independent. The most common way to do this is to show the matrix A or A, whose

columns are these vectors has full column rank. The following propositions ease this task.

Proposition 1.5. Let M be the m x n matrix having upper triangular block form

A1,1  A1,2  ... Al'k

0 A2,2
M-

L 0 ... 0 A,

where Aij is mi x nj. If the columns of the diagonal blocks Aj'i are linearly independent for

i = 1, ... , k then the columns of M are linearly independent.

Proof: Consider the system

M x = 0 (*)

Clearly, x = 0 is a solution to (*). To prove that the columns of M are linearly independent we

need to show that if a E Rn is a solution to (*), then a = 0. So assume that a is a solution to

(*). We see from the last mk equations that a must satisfy

Akk ank = 0

where ank is the vector consisting of the last nk components of a. The columns of AL.k are

linearly independent, so ank = 0. Substituting this partial solution into the next set of mi,_
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equations, we see that a must also satisfy

ALk i anLk. -- 0

where akI is the the vector of components of a corresponding to these columns of A. Again

we see that a,,., = 0 since the columns of ALl k_1 are linearly independent.

Clearly, as we continue to iterate this back substitution process all the componewl.s of (

will be forced to be 0. Therefore, if a is a solution to (*) then a = 0, and, hence, the ColtilliS

of M are linearly independent since the only solution to (*) is the trivial solution. 0

Corollary 1.5.1: If M has lower triangular block form and the columns of the diagonal blocks

are linearly independent, then the columns of M are linearly independent.

Proposition 1.6: Let M be the m x n matrix having the form

A, A2  1
0 A3

If the columns of A, and A3 are affinely and linearly independent respectively, then the cohlmns

of M are affinely independent.

Proof: Consider the matrix

A < A2

= 0 IA3

T IeT3
en

I n
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If R has linearly independent columns, then M has affinely independent columns. If we move

the last row of M up, we obtain the equivalent matrix

A 1 ' A 2

eT I eT Ien, ea3

0 A3

which has linearly independent columns by Propositon 1.5 since the diagonal blocks have

linearly independent columns. Thus, M has affinely independent columns. 0

The next lemma relates the degree of nodes in any P-tree to p = [P1.

Lemma 1.7: Let K, be the complete undirected graph of order n, with N = P U S, S n P = ,
and IPI = p. In any P-tree if s is

1) contained in S, then d(s) < p

2) contained in P, then d(s) < p - 1.

Pgf: First we show that if s is any non-terminal node of a tree with k leaves, then d(s) _< k.

Let deg(s) = d > 2. Now delete s and all of its incident arcs from the tree. The result. is a

forest of d trees (some may be isolated nodes), each of which must contain at least one of the k

leaves of the tree. Therefore, d < k.

Now, if T is a P-tree and s E P, then either s is a leaf of T, in which case

d(s) = 1 < p - 1, or d(s) > 2. In the later case, there can be at most p - I leaves of T, so

d(s) < p - I. If s E S, then by the above argument, d(s) < p. 0
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1.5Organization

Define the polytope

Tp, = conv{x E Rmn I x is the characteristic vector of a P-tree of K,}

Tn,, is the convex hull of spanning trees of K,. In Chapter II we look at T,,,., then in Chapter

III we cover the other interesting special case, T 2,,,, the shortest path polytope. After covering

these two special cases, we consider the general STG polytope Tp,n in Chapter IV. Chapter V

presents presents some areas for further research, and the appendix gives some counting results.



Chapter 11

The Spanning Tree Polytope

In this chapter we will consider the polytope

T," {x E RmnI x is the characteristic vector of a spanning tree of Kn}.

As we have noted, Gr6tschel has already developed a complete, minimal linear characterizationl

of T,,. In this chapter we show that the facet-inducing inequalities of Gr6tschel's formuilation

correspond to upper and lower bounds on the variables and to certain partitions of the niode set

of K,. Each of these inequalities is a facet of Tn,,, hence there exists a set of mn - I affinely

independent spanning trees that satisfy each of them at equality. We prove tile stronger estill

that these sets of spanning trees are linearly independent. This strengthened property will be

very important when we generalize to P-trees in Chapter IV.

All of the proofs in this chapter either use induction or have an inductive flavor. To

avoid the tedious repetition of defining the same notation in each proof, we introduce that

notation now and use it throughout the chapter. Let {yi}k= be the set, of characteristic vectors

in Rm'n of k linearly independent spanning trees of Kq. Let Y be the matrix whose coIIInH ;Ir

these vectors. The values of k and q will be clear from each particular proof. For exatmtple. iII

order to establish a result for Kn, we look at the subgraph K,,.,. Either through assumptioii, or

by invoking a previous result, we establish the existence of a set of k linear independent

spanning trees of K,,.,. The columns of Y will be the characteristic vectors in R""' of t i-se

trees.
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2.1 The Dimension of Ta,,

Gr6tschel proved that the dimension of T., ,, dim(T.,,) = Mn- 1 [17]. We now show

how to construct m,n linearly independent spanning trees of K,.

Proposition 2.1: There exist m,, linearly independent spanning trees of Kn.

Proof: We prove this by induction on n. If n = 2, then m2 = 1 and clearly there is only one

spanning tree of two nodes. Now assume that there are m, linearly independent spanning trees

for some I > 2, and view K1+ 1 as:

KI  1

>1+1

If

Let Y be the matrix whose columns are the characteristic vectors of the m1 spanning trees, and

for i = 1, ... , m, define the spanning trees of K1+ 1 as follows:

y j E A(K
1

)

X! 1 j = (1, 1+1)

0 otherwise

These vectors correspond to each of the m, spanning trees of K, with node /+1 attached as a

leaf to node 1. For i= 2, ... , I define the I- 1 vectors

y j E A(K I )

x = 1 j = (i, 1+1)

0 otherwise
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These vectors correspond to the spanning tree yl of K, with node 1+ 1 attached as a leaf to each

of the nodes 2 through I respectively. Finally, define

x 1+1 -  0 jE A(KI)
{1 otherwise

which is the tree with all nodes connected to node 1+1. By Lemma 1.1 we now have a total of

m, + I = ml.F vectors which describe spanning trees of K,+ 1 . To see that they are linearly

independent, consider the matrix M - (x')i . M has the form:

Y 0 Y 1

M = eT I  1 0

0 e1 1  11-1

where Y1 is the m I x (I - 1) matrix each of whose columns is the vector y'. To see that this

matrix has full rank consider the following sequence of elementary row and column operations.

Subtract each of the last I - 1 columns from column m, + 1, and add (I - 1) times the first

column to column m, + 1 to get the matrix

Y 0 y1

MI= eTI  0

0 0 I1 ]

Rearranging rows and columns gives us the matrix

I !eM I  0
F 1

M11 0 01 y1

0 0I ~L
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which has linearly independent columns by Proposition 1.5. So the vectors {x') ' are linearly

independent for n = I + 1. By induction there are mu linearly independent spanning trees of

Ku foralln>2. 0

2.2 The Trivial Inegualities

We now turn our attention to the so-called "trivial" inequalities, namely the inequalities

that define the boundary of the n-dimensional hypercube.

x. > 0 'x3- " j' =1,..., n

xj < 1

Proposition 2.2: For n > 4 the inequality x, _ 0 defines a facet of Tn,n for every arc a E A.

Proof: For n > 4 this comes directly from Grotschel's results. The lower bounds, xa > 0, do

not define facets for n = 2 or 3. In the case of n = 2, there is only one spanning tree, so no

spanning tree of K2 will satisfy x1,2 = 0. Similarly, for n = 3, each of the three arcs is in two

of the three spanning trees, so only one spanning tree will satisfy xa = 0, while m13 - 1 = 2. 0

Proposition 2.3. For n > 4 there exist mn - 1 linearly independent spanning trees of K, sat-

isfying xa = 0 for all arcs a E A.

Proof. We assume that a = (1, n) without loss of generality, and view K, as

K,.. I

n-1o
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Let yiI7I' ; be a set of linearly independent spanning trees of K,,. 1. The existence of this set is

guarant ' by Proposition 2.1. For i = 1, ... , m. define m,,. spanning trees of K. by

y j E A(K.I)

x i 1 =(2, n)

0 otherwise

These vectors correspond to the spanning trees of Kn.1 with node n attached to node 2 as a leaf.

Next define the tree

1 j=(3, r), 4< r< n- 1

xn '.+i - j- (1, 2), (2, n) and (3, n)

0 otherwise

This tree satisfies x1 ,n - 0 and has the form

j.4

n-1

Now for i - 3, ... , n-I define n - 3 additional spanning trees by

j E A(K. 1 )

x nij- = 1 0=( , n)

0 otherwise

These n - 3 trees are the spanning tree y1 of K,. 1 with node n attached as a leaf to each of
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nodes 3 through (n-i), and hence satisfy xl,n= 0. The total number of points is

Mn.1 + (n - 3) + 1 = mn- 1

by Lemma 1.1. To see that they are linearly independent look at M = (xi,-n-1.

Inn.1+1 yI y1
Y Xmn y

0 0 0 0 row (1, n)

M= eT.1  1 0 0 row (2, n)

0 1 1 0

0 0 0 I,.4

where Y1 is the mn 1 x (n - 4) matrix, each of whose columns is the vector y1. The coliIIrIIs of

the submatrices Y and Yleach contain n - 2 l's since they represent spanning trees of K ,.

The vector Xrnli+1 contains n - 3 l's by construction. So, if we drop row (1, n), multiply

row (2, n) by (n - 2) and subtract from it each of the rows above it, we get the matrix NI.

y r%-1+1 yI y1
"---.---------1

o I 2- n 2- n row(2, n)

0 00 1 10
L------ --- -

0 0 0 I .4
LI

Which has linearly independent columns by Proposition 1.5 since n > 4. 10

Proposition 2.4: The inequality xa < 1 defines a facet of Ta,n for all arcs a E A and ii_> 2.
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£m22L By Grbtschel's work, inequalities of the form

SXa < IWI - 1
aEA(W)

for all W C N, 2 < Iwl < n are facets of T,n. Clearly, if we consider sets with IWI = 2, i.e.,

W consists of any two nodes in N, we get the set of inequalities

Xa < 1 for all a E A. 0

Proposition 2.5. For n > 2, there exist m, - 1 linearly independent spanning trees of K,,

satisfying xa = 1 for all a E A.

Proof: We lose no generality in assuming that a = (1, n). Now view K,, as

K,.I 1

>n

n-l

By Proposition 2.1 there are m,,. 1 linearly independent spanning trees of K,. 1. Let {yi}"' n ' be

their characteristic vectors. For i = 1 ... IM,. 1 define spanning trees of K,, as follows:

I E A(K. 1 )yj

x! = I j = (1, n)

0 otherwise

These trees correspond to the spanning trees of Kn. with node n attached to node I as a leaf.

Now, for i = 2, ... , n- I define n - 2 additional spanning trees of K,, by
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I1 j= (2, r), 3 < r < n-

x i " =I 1 j (1, n) and (i, n)

0 otherwise

The trees xm nl+ i ' 1 have the form shown below.

1 n 2 KU -1,21 n e K,-- 12 )

i=2 i=3 ., n - I

We now have the correct number of points. All that remains to be shown is that they arv lin-

early independent. Consider the matrix M = (xi)__l"'. M has the form

0 In.2

and clearly has full column rank by Proposition 1.5. Thus, the spanning trees which we col-

structed are linearly independent. 0

2.3 Inequalities Generated by Partitions of the Node Set of K.

Grotschel proved that inequalities of the form

(2.1) F Xa < IWI - 1
aEA(W)
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are facets of T., for all W C N, 2 < IWI < n. Further, all spanning trees of K. must satisfy

(2.2) : Xa - .
aEA

If we subtract (2.1) from (2.2) we get the inequality

(2.3) E Xa n -IWl
aEA-A(W)

which defines the same facet as (2.1), but has a different graphical interpretation. Let wI 1,

and assume without loss of generality that W = {n-t+1, n-i+2, ..., n). Define a partition

vi l.'f'+ of the node set N by setting Vi = {:) for i = 1, ,n- and VRi+l = W. Let

k = n - t + 1, then the inequality can be rewritten as

k- i F k F
(2.4) ZIZ Z:Ejxa I> k-i1.

--1 jffi+l 1[E(viv y

Inequality (2.4) states that the number of arcs in any spanning tree crossing between the sets of

the partition must be at least k - 1, where k is the number of sets in the partition.

Proposition 2&. Let the family of sets {V }/=, k < n be a partition of the node set of KR such

that IV'1 = 1, , = 1, ... , k - 1 and lvkl = (n - k + 1). Then (2.4) induces a facet of T",.

Prjgf: This follows directly from Gr6tschel's work and the discussion above. 0

Corollary 2L If (X,X) is a cut in KR, and either JXI = 1 or I = 1, then the inequality

E Xa,) (2.5)
a E(X, R)
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defines a facet of SP..

Proposition 2.8- There exist m. - 1 linearly independent spanning trees of Kn satisfying

[~~~ ~ -V , 4 )] =-1 (2.6)"=- I j i+1 a(VI,Vj

where i=1 is a partition of N satisfying the conditions in Proposition 2.6.

Proof: Let k > 2 be given. Without loss of generality we assume that V - {i) for z = 1,

k-l and that Vk = {k, ... , n} and proceed by induction on n. For n = k + 1 we can view

KL+. I as:

k-I

U V i  ,k

Vk

Kk

. k+1

By Proposition 2.1, there are mk linearly independent spanning trees of K,.. Ve lose no

generality by assuming that at least one tree has node k as a leaf. Let Y be the matrix whose

columns are the characteristic vectors of these trees, with y' denoting the tree having node k as

a leaf. By adding node k+ 1 to node k as a leaf we can construct spanning trees of Kk+ that

satisfy (2.6). Namely, for i = 1 ... , mk define
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t y jE A(Kk)

x= 1 j = (k, k+1)

0 otherwise

k-i
Now, we note that U Vi Kk-i and define k - 1 additional trees as follows. For

1=1

i = 1,..., k- 1 let

Y j E A(Kkl)

mk+" 1 j = (k, k+1) and (i, k+1)
x.

0 otherwise

These trees correspond to spanning tree y' of Kk with leaf k sheared off, node k+ 1 is attached to

node i, and node k is reattached as a leaf to node k+1. These trees satisfy (2.6) since they are

spanning trees of nodes 1, ... , k-1 plus a single arc to the set V k. The matrix whose columns

are the characteristic vectors of these ot+l - 1 spanning trees has the form:

M = 0 It.1

e T eT 1

The columns of M are clearly linearly independent, hence we have constructed "rn+ - I

linearly independent spanning trees satisfying (2.6).

Now, assume that there exist m, - 1 linearly independent spanning trees of K

satisfying (2.6) for some I > k + 1 with V k - {k, ... , I}. We now look at K,+,, which can Ic

viewed as:
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,k

k-1

KI

0 1+1

By the assumption, there exist m, - 1 linearly independent spanning trees of K, satisfying

k-i k ka

"= j=+l IaE (U Uj) _ -

for Ui = V i , i = 1, 2, ... , k - 1, and Uk = Vk - {I+1}. Let Y be the matrix whose columns

are the characteristic vectors of these trees. We note that if we add node 1+ 1, as a leaf to one of

the nodes in the set Vk - {I+ 1}, we obtain a spanning tree of KI+1 which satisfies (2.6). So

define the following trees for i= 1, ... , m1 - 1.

y j E A(K
1

)

x= 1--- (i, 1+1)

0 otherwise

Now, for i = 1, ... , k - I define the k - 1 additional trees
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1 j=(r,a), 1 r <

1, 0=:r, z< r < k-i1

= 1 j(r,l), k <r <-

1 ) -(i, 1+ 1) and (1, 1+ 1)

O otherwise

These trees have the form

and are easily seen to satisfy (2.6). For i k , I - 1 define I - k more spanning trees

1 j=(1, r), 2 < r < k-

1 j (r, i), k < r <t

x = 1 jir), < r <

1 j =(1, 1+ 1) and (i, +1)

O otherwise

These trees have the form
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and also satisfy (2.6). Finally, define the tree having th. for.a

-U v1 1 +_ VI -1t, 1+1) Nvk

This tree satisfies (2.6) and can be described by

1 j= (1, r), 2< r< k- 1

m+-= 1 j = (r, 1+1), k < r < 1

1 j- (1 j)

0 otherwise

The matrix whose columns are the characteristic vectors of these m,+1 - 1 trees has the form.

M1?+1 I XM1+1"1
Y x j x

1T 0

M= 0 0 I1 k2 0 0

0 0 0 Il-k  el-k
eT I e

e.1  1 Ie[ 2  0 1

Each column represents a spanning tree on I + I nodes, so it is easy to see that each column of

rn *
the submatrix Y contains I - I l's, while all the vectors x i , except x 1+1, ' , contain o1lv - "

l's in the first m1 rows. The last vector contains k - 1 l's in the first n1i rows. So nitilni p

the last row by I - 1 and subtract each of the first ml rows. The result is
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Y x M+ fxM+-

0 1 I0 e Tk
I I

MI 0 0 IIk.2  0 0

0 0 0 II-k el'k

iTS 1 ek-2  0 1- k

Subtracting rows (1, 1+1) to (k-i, 1+1) from the last row, then adding rows (k, 1+1) through

(i-1, 1+1) to the last row gives us the matrix

Y xM+1 
x

0 1 0 e k 0

M = 0 0 1k-2 0 0

0 0 0 I1-k el-k

0 0 0 0 2(1- k)

which has linearly independent columns by Proposition 1.5 since I > k + 1. Therefore, the

rn1+ 1 - 1 spanning trees satisfying (2.6) that we constructed are linearly independent, and hence

by induction, there exist m, - 1 linearly independent spanning trees of K, satisfying (2.6) at

equality for all n > k. 0

We can also establish upper bounds on the dimension of any face induced by a general

partition, and give an exact dimension for faces induced by general cuts in Kn.

Pronosition 2.9. Let {Vilk be a family of sets that partitions the node set, N of K,. Let q be

the number of sets in this family having more than one member. Then (2.4) describes a face of

Tn, of dimension at most m, - (q + 1).
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Proof: Construct the following graph. For each set V' in the partition add node v i , and let arc

(v', v1) be in the graph if there is an arc in K,, connecting any two nodes in V and V'. Since

the family {V}= is a partition of the nodes of K,, it is clear that the transformation of lK,, is

just Kk. Any spanning tree of K,, must induce a spanning tree on Kk. Thus the number of arcs

crossing between the sets V' must be at least k - 1. So (2.4) is a valid inequality for all

spanning trees of K,,. Now consider any spanning tree T that satisfies (2.4) at equality. If we

remove the k - 1 arcs which are in the sets (V', V') for all i and j, we are left with k connected

components, some of which may be single nodes. Further, it is easy to see that each component

is a spanning tree of one of the sets V'. Thus, for any set V' that conta ns more than one inod,.

T must satisfy

SXa = Ivil- I.

aEA(V
i)

Therefore, each spanning tree T satisfying (2.4) at equality must also satisfy q additional

equalities, one for each of the q sets V' having more than one member. Each of these cquialili

deals with a different set of variables, so they are linearly independent. So, by Propositioll I.1I

the dimension of the face of T,,,, described by (2.4) is at most m5 - (q + 1). 0

Proposition 2.10: Let (X,X) be an arbitrary cut in K,1 with 1 < lxi < n - 1, then the c'nt-sei

inequality (2.5) defines a face of T,,, of dimension exactly rn - 3.

Proof. {X, X) is a special partition of N, with q = 2. Thus, by Proposition 2.9, the (liiision

of the face described by the inequality is at most m, - 3. Now, we construct m" - 2 linciarly

independent spanning trees of K, satisfying (2.5) at equality to establish that, the dintensioi of

the face induced by a general cut is exactly m,, - 3. Without loss of generality, let X = {1, '2.

... ,k} and X = {k+ 1, ... , n} where I < k < n. By Proposition 2.1 there exist n. line 1a.\
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independent spanning trees of G(X,A(X)) and rn.k linearly independent spanning trees of

G(X,A(X)). Let Y and Z, respectively, be the matrices whose columns are the characteristic

vectors of these sets of spanning trees. For this proof, we associate the arcs of the graph with

the components of the vectors in Rm in the following fashion. The first nk components will

correspond to the arcs in G(X,A(X)), the next k(n - k) components will correspond to tile arcs

in (X,X), and the last mr.k components will correspond to the arcs in G(X,A(X)). Within each

of these three divisions, the arcs are ordered in the usual manner. Now, define mn - 2 spanning

trees of Kn as follows. For i - 1, .... mk define

Y! EA(X)

1 j = (1,k+1)
x!= zj E A(X)

0 otherwise

These trees have spanning tree z1 of G(X, A(X)) attached to each spanning tree of G(X, A(X))

by arc (1, k+1). For a E (X,X) - {(1, k+1)) define

Y jE A(X)

1 j= a

z E A(X)

0 otherwise

Finally, for i - 2, ... , mnfk define

Y! j E A(X)

mk+k(n.k).2+ _ I j = (1, k+l)
xjz! j E A(X)

0 otherwise

These trees consist of the spanning tree yl of G(X, A(X)) being connected to each of the
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spanning trees, except z1, of G(X, A(X)). Each of these trees contains exactly one arc in (X,X)

and thus satisfies (2.5) at equality. To see that these trees are linearly independent consider the

matrix whose columns are the characteristic vectors of these trees.

Y y1 Y1

T o TM eik 0 emnk.

0 1IL-n-k). 1  0

ZI ZI ZI

Where Z' = Z - {z1 ). We can use the rows containing the submatrix Ik(n-k).2 to clear the Y'

from the rows above it and the Z1 from the rows below it. Then subtract the first column from

each of the last mr..k - 1 columns to get the resulting matrix

Y I 0 0

ek 0 0

0 I 0
L o

Z1  0 Z _ ZI

The columns of Z' - Z' are linearly independent [26], so M' satisfies the conditions of Corollary

1.5.1 for having linearly independent columns. Therefore, the dimension of the face of Tn,n

described by (2.5) is mn - 3. 0



Chaipter III

The Ls, tIPath Problem Polytope: T2. .

The previous chapter presents results for the polytope T,,,, representing the special case

when STG reduces to the minimum spanning tree problem. When the order of P is two, SI G re-

duces to another important special case, the shortest (s, t)-path problem. The results for thle

shortest (s, t)-path polytope are presented separately from the case of general p for two reasons.

First, it is an important problem in its own right; second, and perhaps more importantly, the

polytope

T2,= conv{ x E Rmn 
I x is a P-tree of K,}

is not full dimensional, whereas Tp,, has full dimension if p > 3. The proof techniques used in

this chapter lay the groundwork for the results in the next chapter, which covers the case of

general p.

In Chapter II we defined a generic set y - of k characteristic vectors in R . \V

will use such sets in this chapter, with Y denoting the matrix whose columns are these vectors.

As before, the values of k and q will be clear from the proofs.

3.1 The Dimension of T

One factor which separates the case of p = 2 from that of p > 3 is that the i)olyIolw

T 2.n is not full dimensional, while for p > 3 it will be. In the case of n = 2, there is oiilv one

arc, and only one P-tree, so the dimension of T 2,2 = 0 < 1 = M2
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Proposition 3.1. For n > 2, dim(T 2 ,,) = m,, - 2

Proof: Since IP = 2, both nodes in P must be leaves of any P-tree in K,,, so every P-tree mu1t1st

satisfy the two equations:

E x = 1, (3.1)
j=2

X1, + = 1. (3.2)
j=3

These two equations are independent, therefore, by Lemma 1.4

dim(T 2 ,,n) S mn - 2. (3.3)

We now list mn - 1 linearly independent points of T2 ,,, which satisfy (3.3) at equality. As iM

the previous chapter we will proceed by induction on n. For n = 3, m3 - 1 = 2. and there

are only two P-trees, namely

0 and 1 .

0 1

These two trees are clearly linearly independent. Now assume that, for n = I there are ?I-I

linearly independent spanning trees of K/, for some I > 3, and let's look at KI+. We call view

K + 1 as:
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KI

. 1+ 1.

Any P-tree of K I is also a P-tree of Ki+1 . By the assumption there exists a set of mI - 1

linearly independent P-trees of KI . Let Y be the matrix whose columns are the characteristic

vectors of these trees in RmI+1. Define 1 additional P-trees of Ki+ 1 by the following set of

characteristic vectors. Let the first two vectors be

= 1 j = (1, 1+1) and (2, 1+1)

{ 0 otherwise

and,

f 1 j = (1, 3), (2, 1+1) and (3, 1+1)

'I 0 otherwise

These vectors correspond to the P-trees:

1 + 1 2 1 3 1+1 2

Define the remaining I - 2 P-trees as follows, for i = 3, ..., I

= 1 j = (2, i), (1, 1+1) and (i, 1+1)

{ 0 otherwise
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This family of vectors corresponds to the family of P-trees of the following form:

i+1 i

x', i = 3, .... i

The total number of P-trees is (m, - 1) + i, which by Lemma 1.1 is ml., - 1. To see that

these vectors are linearly independent consider the m,+, x (m. 1 - 1) matrix M whose

columns are the vectors Y and X. M has the form:

Y Xm1
----- --------- ------- - T

0 1 1 0 1 eT3

M 0 1 1 0 0

0 0 1 1 I 0
L.

0 0 0 0 11-3

By Proposition 1.5 the columns of M are linearly independent. Therefore,

dim(T 2,,) - - 2

for all n > 3. 0

We now turn our attention to inequalities that describe facets of T 2,,. As in Chapter

II, we start with the hypercube bounding inequalities.

3.2 T ia Ineaualitiem

The hypercube bounding inequalities are those of the form:
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Xa _0
(3.4)

Xa 1l

for any arc a E A. They are clearly valid for T 2 ,n, so for each possible value of n > 3 we need

only demonstrate m,, - 2 affinely independent points satisfying each of these inequalities at

equality in order to show that it is a facet. In the case of n = 3, dim(T 2 ,3 ) = 1 so the only

possible facets of T 2,3 are its two vertices.

1 01
0 and [1.

0 1

Clearly one of these two vectors satisfies each of the six bounding inequalities (3.4) at equality.

Thus, the inequalities (3.4) describe facets of T2,3 . For n > 4, however, we need to consider the

location of the arc a, i.e., is a = (1, 2) = A(P), or is a E (P, S) or A(S)?

3.2.1 The Lower-Bound Ineaualities

Proposition 3.2. For p = 2 and n > 4, the inequality x1 ,2 ? 0 induces a facet of T., .

Proof: The proof will be by induction on n. For n = 4 there exactly four P-trees that satisfy

X1,2 = 0, namely

1 2 1 2 1 2 1 2

3 4 3 4 3 4

(1) (2) (3) (4)

Figure 3-1
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The matrix of characteristic vectors of these trees is

0 0 0 0

1 0 1 0

1 0 0 1

0 1 0 1

0 1 1 0

0 0 1 1

which is easily seen to have full column rank. Thus there are M4 - 2 =4 linearly independleill

points in T2, 4 satisfying xI,2 = 0, and hence xI, 2 >_ 0 induces a facet of T.,,4 .

Now assume that there exist m, - 2 linearly independent P-trees of K, for some I > 4

and look at KI+ r .

• ..' 1+ 1.

Every P-tree of K! is also a P-tree of Kl+, . By the asumption there exist in, - 2 liniearly

independent P-trees of K, satisfying X1, 2 = 0. Let Y = fy }j1, be a set of characteristic

vectors in R 74+ 1 of these trees. Now notice that the set X of I vectors constructed in the proof

of Proposition 3.1 all satisfy X1, 2 = 0. Furthermore, the arguments used in that, proof to

establish the linear independence of the total set of P-trees only required the columns of Y to bec

linearly independent. This independence follows by assumption. Therefore, we have
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ml - 2 + I = m,+ 1 - 2

linearly independent P-trees of K,+ 1 which satisfy x1 ,2 = 0, and hence, x1 ,2 > 0 induces a facet

of T2, 1+ 1. By the induction principle, this inequality induces a facet of T 2 ,n for all n > 4. 0

Since T 2 rn is not full dimensional, there may be several representations of facets. To

illustrate this, consider the following corollary.

Corollary 3.3- The inequality

n

1 j+ 1: X2 ,j : 2

induces a facet of T2 ,n .

Proof: Consider the facet x 1 ,2 > 0. If we multiply this facet by (-2) and add to it the two

equations (3.1) and (3.2) that all P-trees in this category must satisfy, we get the inequality

above. 0

In the case of n = 4, the arc (1, 2) turns out to be the only arc whose corresponding

lower bound inequality induces a facet.

Lemma 3.4. For n = 4, Xa _ 0 is a face of T 2,4 of dimension 2 for all arcs a E A, except

(1, 2).

Proof: There are only five P-trees in this case, the four listed in Figure 3-1 above plus the tree

1 2
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The matrix whose columns are these five vectors is

1 0 0 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 0 1

0 0 1 1 0

0 0 0 1 1

A quick examination shows that every arc a E A, except (1, 2), is contained in exactly two

trees. So for any arc a E A, a 0 (1, 2), there are three trees that satisfy xa = 0. These trees

are linearly independent since all five of the trees are linearly independent. Therefore, Xa 0

describes a face of T2 ,4 of dimension 2 for all arcs a E A except (1, 2). 0

We now turn our attention to the arcs in (P, S) and n > 5.

Proposition 3.5. For n > 5, the inequality Xa _> 0 describes a facet of T 2 , n for all arcs

a E (P, S).

Proof: We lose no generality by assuming that a = (1, n). We view K,, as

KnatrI

n-1I. /

and notice that any P-tree of K,,.l is a P-tree of Kn satisfying x,,, 0 . By Proposition 3.1,
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there are m,,., - 1 linearly independent P-trees of K,-, so let Y represent these trees. Now

define n - 3 additional P-trees. For i = 1, ... , n - 3 define

= 1 j = (2, n), (i+2, n) and (1, i+2)

{ 0 otherwise

These trees satisfy xl,,, = 0, and have the form

i+2 n 2

I - S

x', i = 1, ... , it - 3

Define one last P-tree by

- = f 1 j = (1, 3), (2, 4), (3, n) and (4, n)

0 otherwise

x n 2 represents the tree

1 3 n 4 2

Xn-2

which satisfies xi, n = 0. The total number of trees is

mn- - I + (n-2) = mn - 2

by Lemma 1.1, so all that remains to be shown is that they are linearly independent. Let NI be

the matrix (Y, X). Then
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Yy Xm,.I

0 0 0 0 0 row (1, n)

o 1 1 en5 00e. 00M=

o 1 0 0 1

o o 1 0 1

0 0 0 I,~ 0

We can rearrange the columns of M and drop row (1, n) to get

y I x"_Y Xmj.
- I - - I-

o 1 1 1 0 1 e -
M 0 1 0 1 0

o 0 1 1 0

0 0 0 0 1I.5

The columns of M' are linearly independent by Proposition 1.5. Therefore, Xa 0 induces a

facet of T 2,, for all arcs a E (P, S). 0

As in the case of arcs in (P, S), the arcs in A(S) all have facet inducing lower bound

inequalities.

Proiosition 3& For n > 5, the inequality xa _ 0 induces a facet of T 2,, for all arcs a E A(S).

Proof: Without loss of generality, we can assume a = (n-i, n). Look at K, as



n1€ '

n.

We will list mn - 2 linearly independent P-trees satisfying x,.l., >_ 0 at equality to prove that

the inequality is a facet of T2 ,n. As in the previous proof, there are m. 1 - 1 linearly

independent P-trees of K nl. all of which satisfy xn.n = 0. Let Y be the matrix whose colui im

are the characteristic vectors of these trees. Now define n - 2 additional trees in the followintg

manner. First, let

.  1 j (1, 3), (2, n) and (3, t)

{ 0 otherwise

which satisfies xa = 0 and has the form

1 3 n 2

x
1

Now define x2 as

x2 1 j (1, n) and (2, n)

{ 0 otherwise

which has the form

1 n 2
X 2

x2

And finally, for z = 3, ... nt - 2 define the remaining it - 4 trees by
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1 j= (1, n), (2, i) and (i, n)

{ 0 otherwise

These trees all satisfy xnn = 0 and they represent the family of P-trees

n i 2

x', i-- 3,..., n- 2

As in the proof of Proposition 3.3 we have mn - 2 vectors, and the matrix M whose columnns

are these vectors has the last row whose elements are all O's. If we drop this row we have the

matrix

Y Xm'

- I 0 -i e - - - -
0 1 0 1 1 1 Tn-

I

M 0 1 1 0 I 0

0 1 0 1 0

0 0 0 0 1. 5

The columns of M' are linearly independent by Proposition 1.5. Therefore, the columns of M

are linearly independent. 0

3.2.2 The Unper-Bound Inegualities

We now turn to the upper bound inequalities. Recall, that for T.,,3. both the utpwr-

and lower-bound inequalities define facets, so we need only look at the case of > 1.

Lemma 3.7: For it > 4, the inequality x1,2 < 1 describes a vertex of T2,,.



46

Proof: For any n > 2 there is exactly one P-tree satisfying x1 ,2 = 1, namely

1 2

Thus, for any n, x1 ,2  1 can only describe a vertex of T 2 ,.. 0

Proposition 3.8. For n = 4, the inequality Xa _5 1 describes a face of T 2,n of dimension 1 for all

a E A, except (1, 2).

Proof: As was noted in the proof of Proposition 3.2, there are only two P-trees containing any

arc a E A, except (1, 2). These two trees are linearly independent, so the dimension of the face

described by xa 1 is 1. 0

Proposition 3.9: For n > 5, the inequality xa :5 1 describes a face of T2 ,n of dimension at most

Mn. - 2 for any arc a E (P, S).

Proof: Without loss of generality, let a = (1, n). Since IPI = 2, all P-trees are contained in an

equality space of dimension at least 2, because they must satisfy (3.1) and (3.2). But since any

P-tree satisfying x1,n = 1 has node 1 attached to node n, and node 1 must be a leaf of the tree,

we can replace (3.1) with the n - 1 independent equalities

X1, n -= I

x J = 0, j = 2,3,...,n- 1.

Also, the degree of node n must be 2. Thus the equality

na-1

2 X i, n  " 1
i=2
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must be satisfied. Each of these n + 1 equations involves different variables, so they are

independent. Therefore, by Lemma 1.4, the face described by xl,, _ 1 has dimension at most

m, - (n + 1)- =m,, - (n - 1)- 2= m,., - 2. 0

Finally, we turn our attention to arcs in A(S).

Proposition IM For n > 5, the inequality xa < 1 describes a face of T 2,, of dimension at

most mn - 6 for any arc a E A(S).

Proof: Without loss of generality, let a = (n-i, n). As in the proof of the previous

proposition, any P-tree satisfying x.-, = I must also satisfy the two equations (3.1) and (3.2)

as well as:

1) x 1,2 = 0,

n-22) xk,n -= 1,

/-1

n-2

3) E Xk,n 1- .k--i

Equation (1) tells us that arc (1, 2) cannot be in the tree, while equations (2) and (3) force tli

degree of nodes n-1 and n to be 2. All six equations are clearly independent, so by Lemma 1A

the face of T 2,n described by xn.l, n 5 I is at nost m,, - 6. 0

3.3 Gut-Set Inegualities

In Chapter II we examined inequalities generated from cuts in K,, and from partitions of
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the node set. In the case of p = 2, it is easy to see that the only partitions that generate valid

inequalities are cuts, because the P-tree

1 2

will violate any _> inequality with 0, 1 coefficients whose right hand side is greater than 1, and

the P-tree which is a (1, 2) path spanning all the nodes of K. will violate any < inequality with

0, 1 coefficients whose right hand side is less than n - 1. First, we establish which cut-set

inequalities are valid.

Lemma 3.11: Let (X, X) be a cut in Kn. The inequality

E Xa_1 (3.5)
aE(X,X)

is valid for T 2 ,, if and only if X fl P O 0 and X fl P : 0.

Proof: Assume that (3.5) is valid. This implies that every P-tree has at least one arc in (X, X).

In particular, the arc (1, 2) is in (X, X) which implies that X n P :- 0 and X n P # 0.

Conversely, if this latter condition is satisfied, then at least one arc in any P-tree must cross the

cut. Thus, (3.5) is valid. 0

If (X, X) generates a valid inequality and has the property that either X or X contains a

single node, then (3.5) reduces to one of the equalities (3.1) or (3.2). So, if either X or X is a

singleton, then (3.5) is an improper face of T2 ,,. All other valid cuts are facets of T2 ,, .

Proposition 3.12: For n > 4, if (X, X) is a cut in Kn such that X n P = 0, X f P = 0, and

1 < IXI < n - 1, the inequality (3.5) induces a facet of T 2 ,,.
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Proof: The inequality is valid by Lemma 3.11, so we need only demonstrate that we can find

m.- 2 affinely independent P-trees satisfying (*) at equality for any such cut (X, X). To do

this we let IXI k - 1 > 2 be given and proceed by induction on n. Without loss of gene-

rality, let X = {1, 3, 4, ... , k} and X - N - X. Proceeding by induction, first let n - k + 1.

View Kk. 1 as

3.
2 .k+1

X ko

Kk

If we restrict (,) to Kk we get the inequality

kx1 + x2 . > 1,
XI,2 +L X,

i=3

which must be satisfied at equality by every P-tree of Kk, since it is one of the equalities which

defines the space. By Proposition 3.1 there exist mk - 1 linearly independent P-trees of K,..

These trees clearly satisfy the inequality (*) at equality. We now construct k - I additional

trees as follows. First, define

f 1 j = (1, k+1) and (2, k+I)

0 0 otherwise,

which has the form

1 k+l 2
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and satisfies (3.5) at equality. Now, for i = 3, ..., k define

= 1 j = (1, i), (2, k+1) and (i, k+1)
0 otherwise

These trees have the form

1 i k+l 2

and satisfy (3.5) at equality since the only arc ir (X, X) is (i, k+1). We now have

mk - 1 + (k- 1) = m 1 - 2

P-trees by Lemma 1.1. To see that these P-trees are linearly independent consider the matrix M

whose columns are their characteristic vectors.

Y Xmk

0 I 1 0
M=

0 1 e 2

k-20 0 Ik.2

M clearly has linearly independent columns by Proposition 1.5. Thus, the P-trees we construc-

ted satisfying (3.5) are linearly independent, and the proposition holds for n = k + 1.

Now, assume that there exist m, - 2 linearly independent P-trees satisfying (3.5) at

equality for some I > k + 1. We can view K,+I as
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1. e2

3. ok+1

X ko .1 X
K1

Every P-tree of K, is also a P-tree of K,+i, and further, every P-tree of K, satisfying

E Xa=
a E(X,T-{ +l1)

will satisfy (3.5) at equality. But, by the assumption, there exist m, - 2 linearly independent

P-trees of K, satisfying the above equation. Let Y be the matrix whose columns are the

characteristic vectors of these trees. Now construct I additional trees. First, let

1 j = (1, 1+1) and (2, 1+1)

0 0 otherwise

and

x= 1 j= (1, 1+1), (2, k+1) and (k+1, 1+1)
X [ 0 otherwise

Then, for i = 3, ... , I define

x I I j = (1, i), (2, 1+ 1) and (i, I+ 1I)

= 0 otherwise

These I trees all clearly satisfy (3.5) at equality and they have the forms shown below.
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1 i+1 2 1 1+1 k+1 2

xI x2

1 i 1+1 2

xi i = 3, .,1

Now consider the matrix whose columns are the characteristic vectors of these m+ - 2 trees.

Y xM/ x I  XM/ XMI1  Xml"

0 1 1 0 0 0

0 1 0 eT 2  1 eTk.

M=
0 0 0 Ik-2 0 0

0 0 1 0 1 0 row (k+1, 1+1)

0 0 0 0 0 I.-k-i

Subtracting the column corresponding to xL'l from the column corresponding to x2 gives us the

matrix

Y I XIM I

M 1 1 0
M= T

L i 1 -1 e--

0 o 0 i 1-2

which clearly has linearly independent columns by Proposition 1.5. Therefore, the P-trees that

we constructed are linearly independent, and by the principle of induction (3.5) induces a facet
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ofT 2,. for any n > 4. 0

L4 Other Facet-Inducing Inequalities

In any P-tree, every node in S will either have degree 0, or degree 2. The inequality

that expresses this fact induces a facet of T 2,. .

Proposition 3.M. Let n > 4. Then for each node s E S, the inequality

2x1 ,2 + E x., k 5 2 (3.6)
kE N-f *

induces a facet of T2,,.

Proof: Any P-tree falls into eactly one of the following three cases.

1) The P-tree consists of the arc (1, 2) in which case (3.6) is satisfied at equality.

2) The arc (1, 2) is not in the P-tree and

a) node s is in the tree having degree 2. In this case (3.6) is satisfied at equality.

b) node s is not in the tree, so the left hand side of (3.6) is 0.

Thus, the inequality is valid. Now, we must show that for any value of n > 4 and any node

9 E S, there exist m, - 2 affinely independent P-trees satisfying (3.6) at equality. We show, in

fact, that the required number of P-trees are linearly independent. Without loss of generality,

let s =3. We proceed by induction on n. For n = 4, there are exactly m4 - 2 = 4 P-trees

that satisfy (3.6) at equality, namely:

1 2 1 2 1 2 1 2

3 3 4 3 4
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The matrix whose columns are the characteristic vectors of these trees is

1 0 0 0

0 1 1 0

0 1 0 1

0 0 0 1

0 0 1 0

0 0 1 1

which is easily seen to have full column rank.

Now, assume that there exist m, - 2 linearly independent P-trees of K, that satisfy

(3.6) at equality for some I > 4. We can view KI+, as:

01101

The assumed m t - 2 linearly independent P-trees of Kt satisfying

2 xI,2 + : x,,k !5 2
kEN- 3,1+1+

are also P-trees of KI+ l satisfying

2x 1 ,2 + Z xk -< 2.
kEN-{3}

Let Y the matrix whose columns are the characteristic vectors of these trees. Now construct I

additional P-trees as follows. First, let
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1 j = (2, 3), (3, 1+1) and (1, 1+1)

{ 0 otherwise

xI . = 1 j= (1, 3), (2,1+1) and (3,1+1)

j 0 otherwise

and

x3 = :1 j=(1, 3), (3, 4), (4, 1+1) and (2, 1+1)

{ 0 otherwise

These trees have the forms

1 1+1 1 3 1 3

2 3 2 1+1 2 1+1

Finally, for i = 4, ... , I define the trees

= j- (1,3),(2, i),(3, 1+1) and (i, 1+1){ 0 otherwise

which have the form

1 3
_ 1+1

2 i

All of these trees satisfy (3.6) at equality. The matrix whose columns are the characteristic vec-

tors of these trees has the form
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Y xX x x n xMx1
~~~~1

0 1 0 0 0 0

0 01 00 0
M=

0 1 1 0 1 i 1-4

0 0 0 1 1 0
L -

0 0 0 0 0 1-4

This matrix has linearly independent columns by Proposition 1.5. Therefore, the m+ - 2

P-trees which we constructed that satisfied (3.6) at equality are linearly independent, and by in-

duction this proves that (3.6) induces a facet of T2 ., for n > 4 and any node s E S. 0



Chapter V

The P-tree Polytope

In this chapter we consider the case of 3 < p < n - 1, and we look at the polytope

Tp,= = conv{ x E Rmn I x is the characteristic vector of a P-tree on Kn).

Prior to proving that the polytope is full dimensional, we set up some tools that will facilitate

all the proofs in this chapter.

Lemma 4.1: If a matrix has one of the following forms

Q' = [kek] k >2,

I T
Q = k>3,

ek. 1  k- 3,

1 0 eQ3 = k-1 k> 3
ek.i ek-1 Ik.1

then the columns of that matrix are affinely independent. Furthermore, the columns are

linearly independent if the matrix is equivalent to
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Proof: Q': Consider the (k+1) x (k+1) matrix

-[y k ek 1Q'=[: e ]

Subtracting the first k rows from the last row gives the equivalent matrix

i ek1
0 1-kj'

which has linearly independent columns for k > 2 by Proposition 1.5. Thus, Q1 has affincly

independent columns for k > 2.

Qk: Rearranging the rows and columns of Qk gives us the equivalent matrix

e ki e 1"

This matrix, however, is identical to Ql,, which has full rank if k - 1 > 2. Therefore, for

k > 3 the columns of Q2 are linearly independent, and hence affinely independent.

Q3: Consider the (k+l) x (k+l) matrix

1 0 eT

subtracting the second column from the first yields the equivalent marix

K ek- 1 '1

0 1 cT-i
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The lower right k x k submatrix is equivalent to Q2, which has linearly independent columns fork

k > 3. Thus, by Proposition 1.5, the columns of Q3 are linearly independent. Thus Q3 has full

rank, and the columns of Q3 are affinely independent. 0

As in Chapters II and III, many of the proofs will be inductive, and will either through

assumption or by invoking a previous result, establish the existence of a set of k affinely

independent P-trees of K9 for q = p, (n - 1), or some generic . As in the previous chapters we

define {y'}= to be the set of characteristic vectors in Rmqof these k P-trees, and Y to be the

matrix whose columns are these vectors. The values of q and k will be clear from the context of

the proof. Now we proceed to prove that the polytope Tp,n has full dimension.

4.1 The Dimension of T.

Proposition 4.2: For any p _> 3, there are m,+, + 1 affinely independent P-trees in Kp+i .

Proof: Let p : 3 be given. Then Kp+, has the form

ppl

Clearly, every spanning tree of P is a P-tree of Kp+,, and by Lemma 2.1 there are mp linearly

independent spanning trees of K,. Let Y be the matrix whose columns are the characteristic

vectors of these trees. Now define p + I additional P-trees as follows. First.

I1 j = (1, 2), (2, p+l) and (3, p+l)

x! = 1 j=(3, r) 4 < r< p

0 otherwise
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x1 is the spanning tree of KP+, shown below.

1--" 2

P 1 2, 3) >~p+I

3

Next, for i = 2, ... , p define

1 j = (1, p+1) and (i, p+l)

1 (r, i) 2< r <

xj 1 I j-(i,r) i< k<p

0 otherwise

This family of p - 1 spanning trees of K,+i has the form shown below.

P 1- { 'p+l.

Finally, define the P-tree xP+ j by

xP+  1 j= (r,p+l) 1 < r< p

1 0 otherwise

which has all the nodes of P connected to node p+ 1 as leaves. The number of P-t rees is

mU + p + 1 = aP+I + 1

from Lemma 1.1. As before we demonstrate their affine independence by letting N1 be the
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matrix whose columns are the vectors X and Y and looking at

12 3t/

1M XM m M 0Y xmp x.p xm, Xp 0

0 o 1 1 e T 1

0 1 1 0 0 1
M=

o i 0 1 0 1

0 0 0 0 Ip-3  ep- 3

T eTem,, 1 1 1 e,,. 3  1

The columns of Y are spanning trees of Kp and thus contain p - 1 l's. By their construction

the columns of Xm each contain p - 2 l's. Thus, if we multiply the last row of M by p - 1

and subtract each of the first mp rows we get the matrix

y1 2 3
Y Xmp Xmp XMp Xmp 0

0 0 1 e T 3

0 1 1 0 0 1

0 1 0 1 0 1

0 0 0 0 lp.3 ep- 3

0 ep 3  p - 1

Now multiply the last row by 2 and subtract each of the p rows immediately above it. The final

result is the matrix
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F Y xxx 0

0I 1 1 0 0 1

0 1 0 1 I 0 1

0 0 0 0 'S ep' 3

I

0 o 0 0 0 p- 2

which is upper block triangular with diagonal blocks that have linearly independent columns.

Thus, by Proposition 1.5, the columns of M are linearly independent and, hence, the P-trees we

constructed are affinely independent. 0

Proposition 4.3. For 3 < p < n - 1, dim(Tp,,) = m,.

Proof: Let p > 3 be given. We need to show that there are m,, + 1 affinely independent P-trees

of K. for all values of n > p + 1. We proceed by induction on n. First, for n = p + 1, we

have mp + 1 affinely independent points in Tp,,, by Lemma 4.2. Now assume that there are

m, + 1 affinely independent points in TPj for some 1 > p + 1. This implies that, there are

m, + 1 affinely independent P-trees in K I. Look at Kl+, .

1+1

K1  
>

All P-trees of K, are also P-trees of K,+,. Let Y be the matrix whose columns are the

characteristic vectors of a set of m, + 1 affinely independent P-trees of K I. Now form I
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additional P-trees as follows. First, define x1 by

xl "1 j = (r,1+1) 1 < r< p

{ 0 otherwise

This corresponds to the P-tree with all nodes in P adjacent to node 1+1, and is illustrated in (1)

of Figure 4-1. For i = 2, 3, .. .,pdefine

1 j = (1, 1+1) and (i, 1+1)

x (r, i) 2 < r< i
j (i, r) i< k< p

0 otherwise

which corresponds to the family of trees shown in (2) of Figure 4-1. Finally, for i = p + 1 to /

define

1 j = (1, 1+1) and (i, 1+1)

x i =(r,i) 2 < r< p

0 otherwise

giving us I - p P-trees of form (3) in Figure 4-1.
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p 2 P-{1,t
1 2 p-1 p 3

1P 1+1 a

1+1 " p

(1) (2)

2 P -f)
.. 3

1+ 1

"p- 1

(3)

Figure 4-1

By Lemma 1.1 we now have mn+, + I P-trees, and all that remains to be shown is that they

are affinely independent. So consider the matrix whose columns are the vectors X and Y. This

matrix has the form

Y I Xmj
- - - -

1  T
0 1 eT-eP-1 I  -

0 e.-I 1 I 0

L 4
0 0 0 I 11P

The center diagonal submatrix is equivalent to Q2, and since p > 3, this submatrix has linearly

independent columns by Lemma 4.1. Thus, M has affinely independent columns by Proposition

1.6. Therefore,

dim(Ti+ 1 ) = "r+ 1.
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And so by induction,

dim(TP,,,) =Mn

for all values of n with 3 < p <n-. 0

Now that we have established the dimension of Tp,., we turn our attention to the

hypercube bounding inequalities.

4.2 The Trivial Ineaualities

4.2.1 The Lower-Bound Ineiualities

As in Chapter III we need to consider the location of the arc. First we consider the

special case of p = 3.

Proposition 4.4: For p = 3 and n > 4, Xa _> 0 describes a facet of T 3 ,, for all arcs a E A(P).

Proof: Without loss of generality, assume that a = (1, 2). We need to list m. affinely

independent points satisfy-ing x1 ,2 = 0 for all values of n > 4. We proceed by induction on n.

For n = 4 there are six arcs (M 4 = 6) and there are only six P-trees satisfying x,, 2 = 0. They

are

1 2 1 2
1 2

3 4 3 4
3

1 2 1 2 1 2

3 4 3 4 3 4
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Let M be the matrix of characteristic vectors of these trees, then

0 0 0 0 0 0

1 1 1 0 0 0

1 0 0 1 1 0

M - 0 1 0 1 1 1

0 1 1 1 0 1

0 0 1 0 1 1
1 1 1 1 1 1

which is easily seen to have rank 6. So for n = 4 there are M4  6 affinely independent P-

trees, and x1 ,2 > 0 describes a facet of T 3 ,4 . Now assume that there are m, affinely inde-

pendent P-trees of K, satisfying x, 2 = 0 for some 1 > 4. View K1+ 1 as

1+1

K1

and again note, that every P-tree of K, is also a P-tree of KI+I . Let Y be the matrix whose

columns are a set of m, affinely independent characteristic vectors of P-trees satisfying x , .= 0.

and define I additional trees in the following manner. Let

= 1 (1, 1+1), (2, 1+1) and (3, 1+1)

{ 0 otherwise

x = 1 (1, 1+1), (2, 1+1) and (2, 3)

{ 0 otherwise

and
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1 (1, 1+1), (3, 1+1) and (2, 3)

xj- 0 otherwise

For the last I - 3 trees define for i = 4 ... ,1

1 j = (1, 1+1) and (i, 1+1)

x, = 1 j= (2, ) and (3, i)

1 0 otherwise

All of these trees satisfy x1,2 = 0. They have the forms shown below.

1 2 1 2 1 2

3 1+ 1 3 1+ 1 3 1+ 1

x 1  x 2  x 3

12 3

1+1

x', i = 4..., 1

We now have m, + I = m= +i P-trees. If they are affinely independent, then x,2 > 0 induces a

facet of T3, 1+1* The matrix whose columns are the columns of Y and X is

I

Y 1 Xrn

0 1 l 1 ' e-3

M= 0 I 1 1 0 0

0 1 0 1 0

0 0 0 0 11-3
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Clearly by Proposition 1.6, the columns of M are affinely independent. Thus, the m1+ 1 columns

of Y and X are affinely independent, and x1 ,2 _> 0 induces a facet of T3 ,1+ 1. So by the principle

of induction, the lower bound inequality Xa > 0 defines a facet of T3,, for all n and any arc

a E A(P). 0

Proposition 4.5. For p _! 4 and n > p + 1, the inequality Xa > 0 describes a facet of Tp,, for

all arcs a E A(P).

Proof. Let p >_ 4 be given. Then, without loss of generality, we assume that a = (1, 2). We

now demonstrate n,, affinely independent P-trees satisfying xl, 2 = 0 for all n > p + 1.

Working by induction, let n = p + 1 and view K,+l as:

Kp p+

Every spanning tree of K. is a P-tree of KP+l. By Proposition 2.3 there exists a set of mp I

linearly independent spanning trees of KP satisfying x1 ,2 = 0. Let Y be the matrix whose

columns are characteristic vectors of these spanning trees. Now construct p + 1 additional

P-trees as follows. For i = 2, ... , p define

I j =(1, p+1) and (i, p+1)

x1. I j= (r, i) 2 < r< i

J I j =(i, r) i< k< p

0 otherwise

Then define
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1 j=(r, p+1) I <r <p

' {0 otherwise

and

(1 j r p+l1) 2 < r < p

xF+ I ji j(1, 3)

0 oherwise

These trees have the forms

2 P-{1, i}

3
1 P+l i

i , p

1 2 P-1 p

xp+ p+

We now have m,,P-trees by Lemma 1.1. Let M be the matrix (Y, X), and look w~
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y I P+1x M 0 MP

T 1 00 e T.0

0 Ip.1 e,. 1  ep-l

lT e T 1 1L mP -1 eP-1

The columns of Y are spanning trees of Kp and hence contain p - 1 l's. The columns of Xt'P

P+1each contain p - 2 l's by construction, and xm, contains exactly one 1. So multiply the last

row by p - 1 and subtract the first mp rows and the rows containing the submatrix I., from it.

The resulting matrix is

Xm, 0 mP+1

T0 eP. 1  1 0

0 'p-i ep. Pe1

0 0 0 -1

which, by lemma 4.1, satisfies the conditions of Proposition 1.5 for having linearly independent

columns. Thus the my+l P-trees that we constructed are affinely independent. So there are

mp+ 1 affinely independent P-trees of K,+ i satisfying x, 2 = 0.

Now assume that there are m, affinely independent P-trees of KI for sonic I > p + I.

and look at Kl+, .

1+1

K1
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Any P-tree of K1 is also a P-tree of Ki+ 1. Let Y be the matrix whose columns are the

characteristic vectors of a set of m, affinely independent P-trees of K, which satisfy x1, : = U.

Using the same construction as in the induction step of the proof of Proposition 4.3 gives a

matrix M with the same form as that shown on page 64, but in the present case the colums of

Y are affinely independent and not linearly independent. Since all columns of X satisfy x1 ., = 0

by construction, Proposition 1.6 enables us to conclude that the columns of (Y, X) are the

characteristic vectors of m, + 1 = m1+ 1 affinely independent P-trees of K,+ 1 , all of which

satisfy x,, 2 = 0. Thus, by the induction principle, the inequality x, 2 _> 0, and hence any

inequality of the form Xa _ 0, a E A(P), is a facet of Tp,, for any n > p + 1. 0

We turn now to the arcs in (P, S), and immediately need to treat a special case.

Lemma 4.6. For p = 3 and v = 4, the inequality Xa _! 0 defines a face of T3 ,4 of dimensiou 3

for all arcs a E (P, S).

Proof: If an arc a E (P, S), say a = (1, 4) is not allowed to be in a P-tree, then tile only

possible P-trees are the three spanning trees of P and the two trees of the form:

1 2 1 2

3 4 3 4

If M is a matrix with these five trees as columns, then

I 1 0 1 0

1 0 1 0 1

0 1 1 0 0

M= 0 0 0 0 0

0 0 0 1 1

0 0 0 1 1

1 1 1 1 1
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can quickly be seen to have rank 4. So the dimension of the face described by the inequality

Xa > 0 is 3. 0

Proposition 4.7: For p > 4 and n = p + 1, the inequality Xa > 0 induces a facet of T P'+1 for

any arc a E (P, S).

Proof: Let p > 4 be given. Without loss of generality, let a = (1, p+ 1). The inequality

xl,p+l _> 0 is clearly valid for Tp,p+1 , 3o we need only show that there are m+ affinely

independent P-trees in Kp+, satisfying xl, 1  = 0. KP+ 1 can be viewed as

1.

Kv " ' p+l

p*

Any spanning tree of P is a P-tree of K,+ 1 satisfying x,P+, = 0. By Proposition 2.1 there are

mP linearly independent spanning trees of P. Let Y be the matrix whose columns are the char-

acteristic vectors of these trees. Now define p additional P-trees. First, for i = 3, . . ., p define

I j = (1, 2), (2, p+l) and (t, p+l)

I j=(r,i) 3< r<

j 1 j= (i,r) i< k< p

0 otherwise

Then define the two trees

1 j= 1,2)

xI I j j=(r, p+l) 2<r <p

0 otherwise
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and

1 j =(1, 3) and (2, 3)

xP 1 j (r,*,+l1) 3 < r < p

0 otherwise

These trees satisfy x,+ 1 = 0, and are shown below.

3 P -- 1,, 2, z)
4

1 2 p+l i4 -.

"-,-

i-2

x ' ,  3, ... , Ip

,, 3 P - {1, 2) 14 11 - 1.'2. 3]

x "p-1  x"p

Let M be the matrix (Y, X). Since row (1, p+l) is all O's, drop it and look at

Y XmP XmI. Xnp

0e-. 2  1 0 row (2, p +1)

0 Ip.2 ep. 2  ep. 2

T T
eC.2 I
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The columns of Y are spanning trees of Kp and hence contain p - 1 l's. The columns of X'mp
P-1

each contain p - 2 l's by construction. Finally, vector xmp contains exactly one 1 and vector

p+1xnP contains two l's. So multiply the last row by p - 1 and subtract the first mp rows and

the rows containing the submatrix p.-2 from it. the resulting matrix is

Xm "'
Y I XI  P-1 xr

xid XXP
T - - -

-0 eT 1 0 row (2, p+l)0 p-2I

0 'p.2 ep- 2  e-2

0 0 0 I -1

which has linearly independent columns by Propositions 4.1 and 1.5 . Thus, the mrp+ P-trees

that we constructed are affinely independent and xa > 0 induces a facet of T,,r+1 for all arcs

a E A. 0

Proposition 4.8. For p > 3 and n > p + 2, the inequality xa > 0 induces a facet of Tp,n for all

arcs a E (P, S).

P of: Let p _> 3 be given. Without loss of generality, assume a = (1, p+l). The inequality is

clearly valid for Tp,n, so we need to find mn affinely independent P-trees that satisfy xa = 0.

We proceed by induction on n. For n = p + 2, we view Kp+ 2 as

o p+2

KP+1 p+l0

and have two cases to consider. If p _> 4. then by Proposition 4.7, there are ma,+1 affinely inde-
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pendent P-trees of K satisfying xl,p+ 1 = 0. We then define p + 1 additional P-trees exactly

as was done in the proof of Proposition 4.3 with I = p + 1. By their construction these trees

satisfy x1p4+1 ,-- 0, and by Proposition 1.6, the total set of mp+ 2 P-trees are affinely

independent, so we are done. If p = 3, however, we need to look at the following 10 P-trees

that satisfy x1 ,4 = 0.

1 2 1 2 1 2 1 2 1 2

3 3 3 3 4 3 5

1 2 1 2 1 2 3

3 5 3 55 4

1 2 3 1 3 2

4 5 4 5

Let M be the matrix of characteristic vectors of these trees, then

1 1 0 0 0 0 0 0 1 0

0 1 1 1 0 0 0 0 0 1

1 0 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 1 0

M= 0 0 0 1 0 0 0 1 0 1

0 0 0 0 1 1 1 1 0 0

0 0 0 0 1 1 0 0 0 1

0 0 0 0 1 0 1 0 1 0)

0 0 0 0 0 0 0 1 1 1

,1 1 000000 1 1 01
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which has rank 10. So these trees form the set we need.

Now assume that there are m, affinely independent P-trees of KI, which do not use arc

a = (1, p + 1), for some I > p + 2, and look at KI+ 1.

P
1+1

KI

By the assumption, there are m, affinely independent P-trees of K, satisfying xl,p+1 = 0. and

every P-tree of K I is also a P-tree of KI+ 1. Let Y be the matrix whose columns are the

characteristic vectors of these trees, and X be the matrix whose columns are the characteristic

vectors of the I P-trees constructed in the proof of Proposition 4.3. We see that we now have a

set of m,+ 1 P-trees that satisfy x,P+1 = 0 and are affinely independent by Propositionu 1.6.

Therefore x ,p+ > 0 describes a facet of Tp,/+ I. By the induction principle Xa > 0 Will

describe a facet of Tp, n for p > 3 and n > p + 2 and all arcs a E (P, S). 0

Last, we turn to the lower-bound inequalities involving arcs in A(S).

Proposition 4.9: For p > 3 and n > p + 2. the inequality xa > 0 induces a facet of T ,. for

any arc a E A(S).

Proof: Let p ? 3 be given. Without loss of generality, let a = (n-l, n). The inequality is

clearly valid, so we need only demonstrate m, affinely independent P-trees satisfying

xn.l,n = 0. View K,, as
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n-2

The diagram is drawn for n > p + 4, for the purpose of clarity, but as will become clear by the

construction of the trees satisfying xn.l, n = 0, we can prove the result for n > p + 2. By

Proposition 4.2, there are mn.i + I affinely independent P-trees of Kn.1 . None of these trees

uses arc (n-l, n). Let Y be tWe matrix whose columns are the characteristic vectors of these

trees. We can now construct n - 2 additional P-trees by letting

1 j= (r,n) I < r< p
S{0 otherwise

For i = 2. p define

1 j (1, n)and (i, n)

j =(r, i) 2<r<

1 j= (, r) i<k < p

0 otherwise

and if n > p + 2, then for i = p + 1 to n - 2 define

1 j = (1, n) and (i, n)

x;= . Ij=(r,,) 2< r<p

0 ot herwise

These n - 2 vectors satisfy x,,-., = 0 since they do not use arc (n-1. n), and correspond to
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the trees

P -1 P2 P-{1,z)

2 P-1  p3

nL 3

2 P-{l)

1 n

p

X', : = p + 1,..., n- 2

The total number of trees is

mn.1 + 1 + (n - 2) = rn.i + ( n - 1) =m.

To see that these vectors are affinely independent let M be the matrix (Y, X).

I N I
T T

0 1 ep.1 I 0

- 0 ep.1  0

0 0 0 9l-P

0 0 0 0 row (i-1. n)

Dropping row (n- 1, n) from NI, we see that the matrix has affinely independent columns by
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Proposition 1.6. Thus the inequality xa > 0 induces a facet of Tp," for p _> 3, n > p + 2 and

all arcs a E A(S). 0

In summary, except in the case of p = 3, n = 4 with a E (P, S), the inequality xa > 0

induces a facet of Tp,,f, for p _> 3, n _ p + 1 and all arcs a E A. This will not prove to be the

case for the upper-bound inequalities.

4.2.2 The Upper-Bound Inequalities

As in the case of the lower bounds, we will consider the inequalities by the location of

the arc a, starting with a E A(P). We immediately have a special case.

Proposition 4.10: For p = 3, n > p + 1, and a E A(P), the inequality xa < 1 induces a face

of T 3 ,n of dimension at most mn - 3.

Proof: Without loss of generality, let a = (1, 2). To establish this upper bound on the

dimension of the face we demonstrate that every P-tree that satisfies x1,2 = 1 must also sal isfy

two other independent equations. Since nodes 1 and 2 are connected, node 3 must be a leaf, so

we have the equation

n

x 1 3 + x2 .3 + x3 =1.
i=4

Also, either node 1 or node 2 must be the other leaf, so only one other arc can be incident to

either of nodes I and 2. This can be expressed in the equation

Z(xl,j + x2 j) = 1.

Each of the three equations deals with different variables, so they are independent. Therefore.
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there are three independent equations that all P-trees which include arc (1, 2) must satisfy.

Thus, by Lemma 1.3, the dimension of the face described by x1 ,2 _< 1 is at most mn - 3. 0

For p >_ 4, however, we have the following result.

Pronosition 4.11: For p _> 4 and n > p + 1, the inequality Xa < 1 describes a facet of Tp, for

each arc a E A(P).

Proof. Let p > 4 be given. Without loss of generality, let a = (1, 2). The inequality is valid

for Tp,,, so we list m, linearly independent P-trees of Tp,, satisfying x1,2 = 1 for any

n> p + 1. By induction, let n = p + land view K+ 1 a s

Kp P+

Every spanning tiee of P is a P-tree of Kp+1 , and by Proposition 2.2, there exists a set of

MP - 1 linearly independent spanning trees of P satisfying x1 ,2 = 1. Let Y be the matrix

whose columns are the characteristic vectors of these trees. Now define two P-trees by

(1, 2), (2, p+l) and (3, p+l)

1 j=(3, r) 4 < r<p

0 otherwise

and

(1, 2), (2, 3), (3, p+l) and (4, p+l)

x2= I j=(4,r) 5 < r<p

0 otherwise
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These two trees satisfy x1 ,2 = 1 and have the forms shown below. Please note that the trees are

illustrated for a value of p > 7 for clarity sake, but they apply for the case of p > 4.

P - {1, 2, 3j

I + 2

xl

P- {1, 2, 3, 4

x 
2

Now for i - 3, ... , p define the p - 2 additional P-trees

1 j = (1, 2), (1, p+1) and (i, p+l)

1 j= (r, i) 3 < r < i

Xj=l 1 j- (i,r) i<r'p

0 otherwise

These trees also satisfy x1, 2 = I and have the form

1 2 3 P - 1{ , 2 , ,

x+ p
xI ~ z=3,.,P
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Finally, define

1 j -(1,2)

x. 1 j= (r,p+1) 2 < r < p

0 otherwise

which has all nodes except node 1 attached to node p+. Node 1 is attached to node 2 as a leaf.

We now have

MP - I +3 + (p- 2) =m. + p = mp+

P-trees, all satisfying x1 ,2 = 1. Let M be the my+i x M,+, matrix whose columns are the

characteristic vectors of these trees. Then

Y xp x3P X xm P

0 0 0 1 Te4  0

0 1 0 0 0 0 1
M=

o 1 1 1 0 0 1

0 0 1 0 1 0 1

0 0 0 0 0 'p.4

where row I is all l's. The columns of Y are spanning trees of Kp containing p - I I's. The

vectors xi and x2 each contain p - 2 l's by construction, the columns of X,, also conl1aill

p - 2 I's. xHM contains exactly one 1. Multiply row 1 by p - 2, subtract rows 2 to n1, from

it and append it as an extra row at the bottom of the matrix. Note that this new matrix, .

has the same column rank as M.



83

1 2 1 +
Y xX mxp XMP Xmp

0eT. 4  0

0 1 0 0 0 0 1

MI  0 1 1 1 0 0 1

0 0 1 0 1 0 1

0 0 0 0 0 Ip4 ep. 4
T

0 1 1 1 1 ep -4

Multiply the last row by 2 and subtract rows (1, p+l) through (p, p+l) from it to get

y1 2 x+
Y xmp Xmp X.P xp

-1 - T
0 0 0 1 1 eP 4  0

0 I 1 0 0 01 0 1

Mt t  0 i 1 1 1 01 0

0 0 1 0 1 0 1L L

0 0 0 0 0 1 Ip4 ep. 4
I

0 0 0 0 0 0 p - 3

which satisfies the conditions of Proposition 1.5 for having linearly independent columns.

Therefore, we constructed m, linearly independent P-trees satisfying xl 2 = 1.

Now assume that there are m, linearly independent P-trees of K1 satisfying x,, 2 = I for

some I > p + 1 and iook at Kt+, .

1+1

K,
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We will find mr+ 1 linearly independent P-trees of KI+1 satisfying x, 2 = 1. Since every P-tree

of K, is also a P-tree of K1+1, let Y be the matrix whose columns are the characteristic vectors

of m, linearly indeppendent P-trees of K1 that satisfy Xl,2 = 1. Now define the P-trees

I j = (1, 2), (2, 1+1) and (3, 1+1)

x!. 1 j=(3, r) 4 < r<p

o0 otherwise

and

l j = (1, 2), (2, 3), (3, 1+1) and (4, 1+1)

X?. = 1 j=(4, r) 5 < r< p

0 otherwise

For i= 3, . p define the trees

I j= (1, 2), (1, 1+ 1) and (i. 1+1)

1 j= (r, i) 3 < r i

I j=(i,r) i< r< p

0 otherwise

and for i =p + 1 ... define

1 j = (1, 2), (1, 1+1) and (i, 1+1)

xi= 1 j=(i,r) 3 < r< p

0 otherwise

The total number of P-trees is

m1 + (I - 2) + 2 =
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and they all satisfy X,,2 =1. The trees that the vectors correspond to are listed below.

1 2 P - 1, 2, 3 I

xi

1 2 P - 1, 2,:i

3

x', = 3 ,...p

1 2 P - 1, 2)

3

p -
1+1p

x P i~ +1.
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All that remains to be shown is that these P-trees are linearly independent, so look at the

matrix M = (Y, X).

Y XMp

0 1 0 0 1 1 e,. 4

0 1 0 0 0 0
M= I

01 1 1 1 01 0

0 0 1 0 1 0

0 0 0 0 0 Ij4

The columns of M are linearly independent by Proposition 1.5. Thus, there exist m,+ 1 linearly

independent P-trees of KI+, satisfying x1 ,2 = 1, and hence, by the principle of induction,

x1 ,2 _< I defines a facet of Tp,,, for p > 3 and n > p + 1. 0

When we consider the arcs in (P, S) we see that the upper-bound inequalities do not

induce facets unless n > p + 2. Similarly, for arcs in A(S) the upper-bound inequalities do not

induce facets unless n > p + 3.

Proposition 4.12: For p > 3 and n = p + 1, the inequality Xa < 1 describes a face of Tp,p+l

of dimension mp+, - 2 for all arcs a E (P, S).

Proof: Since n = p + 1, and arc a E (P, S) is forced to be in the P-tree, the P-tree is also a

spanning tree of KP+ I. Therefore, any P-tree satisfying xa = 1 must also satisfy

M,+i

Z Xi= P.
i--i
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These two equations are clearly independent, so by Lemma 1.4, the dimension of tile face

described by Xa < 1 can be at most ap+l - 2 for all arcs a E (P, S). We will now

demonstrate m+I - 1 linearly independent P-trees satisfying xa = 1 to prove that the

dimension is exactly mr+ 1 - 2. Let p > 3 be given. As always, view K p+las:

p+l

Without loss of generality, let a = (1, p+l). By Proposition 2.5 there exist mp - 1 linearly

independent spanning trees of Kp satisfying x1 ,2 = 1. Let Y be the matrix whose columns are

the characteristic vectors of these trees. Now, define mp P-trees of K,+ 1 as follows. First,

define

1 j = (1, 2), (1, p+l) and (3, p+l)

x= 1 j = (3, r) 4 < r < p

0 otherwise

and then, for i = 1, .... mp - 1 define

y E A (P (1, 2))

x +  = 1 (1, p+l)and (2, p+l)

0 otherwise

The tree x 1 has the form:

1 p+1 3 P-{1, 2.3}
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and the mp - 1 trees x, i = 2, ... , mp correspond to the spanning trees Y of Kp with arc (1, 2)

replaced by the two arcs (1, p+l) and (2, p+1). Note that these trees do not use arc (1, 2).

We now construct p - 2 additional trees in the following manner. For i = 3, ..., p definc

= (1, p+l) and (i, p+l)

XTp+i'2 (,_)

1 j=(i,r), i< r <p

0 otherwise

These trees satisfy xlP+ l = 1 and have the form

1 p~l i P -{1, :}

i = 3, .... , p

All of these trees use the arc (1, p+1), and do not use arc (1, 2). Finally, define the trec

m 1-= f 1 j=(r,p+) < r< p

'10 otherwise

This tree satisfies x,,P+l = 1, does not use arc (1, 2), and has the form

p+l

P p>

We now have constructed rp+ - I P-trees satisfying x,,+ = 1. To see that they are

linearly independent, consider the matrix whose columns are the characteristic vectors of Ihese

trees. This matrix has the form
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1 0 0 0 0 row (1, 2)

vy XMp+ 1  X 1MP 0

e1 1 eT 1 row (1, p+ 1)

M=
0 epy. 0 0 1 row (2, p+ 1)

1 0 1 0 1 row (3, p+l)

0 0 0 Ip.3 e,. 3

Where Y' is composed of the last mp - 1 rows of Y. Use the first row to clear the first column.

Then multiply row (1, p+l) by (p - 2). The resulting matrix is

1 0 0 0 0 row (1, 2)

o x X/mp 0T0 (p- 2) e T-
--0 (p -2)ee 1  p- P 3  p-2 row (1p+l)

o em 1  0 0 1 row (2, p +I)

0 0 1 0 1 row (3, p+I)

0 0 0 Ip. 3  ep. 3

Each of the columns of the submatrices Y' and XMP, and the vector x m P
"F1 contain (p - 2) I's

by construction, so subtract the rows containing these submatrices from row (1, p+ 1 ). Then

move the resulting row to the bottom of the matrix. The result is
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1 0 0 0 0 row (1, 2)
"1- M n+1 X/

0 eT 1  0 0 1 row (2, p+])

0 0 1 1 0 1 row (3, p+1)
I

0 0 1 0 Ip.3 ep. 3

0 0 0 0 p- 2  row (1, p+I)
L I -

The matrix T is Y with its first row moved to the bottom, and has full column rank
em, J

since Y has full column rank. Hence M" satisfies the requirement of Proposition 1.5 to have

linearly independent columns. Therefore, the dimension of the face of T described by

Xa < lis Mp+i - 2fora E (P,S). 0

Proposition 4.13. For p > 3 and n = p + 2, the inequality xa 5 1 describes a face of Tp. +..,

of dimension mp+ 2 - 2 for all arcs in A(S).

Proof: As above, any P-tree satisfying xa = 1 for the arc a E A(S), must be a spanning tree of

KP+ 2 and must, therefore, satisfy

M P+2

xi =P + 1.

making the dimension of the face that it describes at most m,+ 2 - 2. We can now construct

mp+2 - 1 linearly idependent P-trees satisfying Xa = 1, proving that the dimension of the filce

is exactly mP+ 2 - 2. Let p > 3 be given. As before, view Kp+ 2 as:
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pp

K,+ 1  p+l

The only arc in A(S) is (p+l, p+ 2 ). Therefore, we need to construct mp+ 2 - 1 linearly

independent P-trees satisfying xp 1 ~+ = 1. By the proof of Proposition 4.12, there exists a

set of mp+l - I linearly independent P-trees of Kp+ 1 satisfying xl,p+1 = 1. Let Y be the

matrix whose columns are the characteristic vectors of these trees. Now, construct nip+i P-trees

of Kp+2 as follows. First, let

1 j = (p+l, p+2), (1, p+l) and (2, p+ 2 )

= 1 j= (2, r) 3< r< 

0 otherwise

and then, for i = 1, ... , mp+l - 1 define

y j E A(Kp+1 ) - {(1, p+1)}

xj+ 1 = 1 j= (1, p+ 2 ) and (p+l, p+2)

0 otherwise

Each of these trees satisfies xP+IP+ 2 = 1. The tree x' has the form:

1 p+l p+ 2 2 P-f,2}
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As in the proof of Proposition 4.12, the ap+, - 1 trees x', i = 2, ... , mp correspond to the

P-trees Y of K,+, with arc (1, p+l) replaced by the two arcs (1, p+ 2 ) and (p+l, p+ 2 ). We

now construct p additional trees in the following manner. First, define

S j = (1, 3), (3, p+l), (2, p+ 2 ) and (p+l, p+ 2 )

MV+ 1+  I  1 j= (2, r) 4< r< p

0 otherwise

and for i = 3, ... , p define

1 j = (1, 2), (2, p+l), (i, p+ 2 ) and (p+l, p+ 2 )
1pi- j -- (r, i) 3 < 

Xj j= (i, r) i <_

0 otherwise

These trees satisfy xP+I,p+ 2 = 1 and have the forms

1 3 p+l p+2 2 P-{1, 2, 3}

1 2 p+l p+2 i P-l, 2, i}

x in a +-n 3, tP

Finally, define the tree



93tl j= (1, p+l)

x p+
2' -1 1 j (r,p+2) 2 < r< p+1

0 otherwise

This tree satisfies x +IP+2 = 1 and has the form

p+l p+ 2  P-{1}

We now have constructed r+ 2 - 1 P-trees. They all satisfy xp+i+, = 1, and none of them.

except for the first and last, use arc (1, p+l). To see that they are linearly independent

consider the matrix whose columns are the characteristic vectors of these trees. If we move rows

(1, p+l) and (p+l, p+ 2 ) to the positions shown, this matrix has the form

1 0 0 0 1 row (1, p+l)

vy x A xtM 0

1 e 1 e- 1 row (p+l, p+2)
M = 

2

0 e -
1  0 0 0 row (1, p+2)

L 1 0 1 0 1 row (2, p+2)

0 0 0 Ip. .,

where Y' is Y with row (1, p+l) deleted. The structure is similar to that of the matrix in the

proof of Proposition 4.12. As before, use the first row to clear the first column. Then subtract

row (p+l, p+ 2 ) from row (1, p+ 2 ). The resulting matrix is
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1 0 0 0 1 row (1, p+I)

0+I X I -1

0 e.T e T 0 row (p+l. p+ 2 )

M
l

_ T
0 o -1 eT 2  0 row (1. p+2)

0 0 1 0 0 row (2, p+2)

0 0 0 .p-2  ep. 2

Add each of the last p - 1 rows to row (1, p+ 2 ). Then move the resulting row to the bottom

of the matrix. The result,

1 I 0 0 0 1 row (1. p+ Il)

- - yt mp°+l Xv
0 I I X rap-1 TV

M11T 1 1 2  0 row (p+l, p+ 2 )

0 0 1 1 0 0 row (2, p+2)

Io o 0 Ip.2 p.

0 0 0 0 p - 2  row (1, 71+2)

satisfies the conditions of Proposition 1.5 for have linearly independent columns since

[Yr
Y= [eT

Therefore, the m p+2 - 1 P-trees we constructed are linearly independent, and the diien.sion

of the face of TP-P+ 2 described byxa ! 1, a E A(S) is mp+ 2 - 2. 0

For n > p + 2, a E (P, S) and n > p + 3, a E A(S), the upper-bound inequalities do
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define facets of Tp,.

Proposition 4.14: For p > 3 and n > p + 2, the inequality Xa < 1 induces a facet of Tp, for

all arcs a E (P, S).

Proof: Let p _> 3 be given. We will proceed by induction on n. First, for n = p + 2, look at

Kp+ 2 as

Kp+1  +p+2

Without loss of generality, let a = (1, p+l). Now, by the proof of Proposition 4.12, there exists

a set of mp+l - 1 linearly independent P-trees of K,+ 1 satisfying x,+ 1 = 1. These trees are

also P-trees of K P+ 2 . Let Y be the matrix whose columns are the characteristic vectors of these

trees, and define the following two P-trees.

1 j =(1, p+l), (1, p+ 2 ) and (2, p+ 2 )

xjl I 1 j =(r, p+1) 3 < r < p

0 otherwise

and

1 j = (1, p+l), (2, p+l), (2, p+ 2 ) and (3, p+ 2 )

x,=t 1 j =(3, r) 4 < r< p

0 otherwise

Both of these trees satisfy xP+1 = 1. They have the forms



96

2 p+2 1 p+l- {1, 2}

x1

P -"{1, 2, 3}

p+2

x
2

Now, for i =2,... p define the p- 1 P-trees

1 j = (1, p+l), (i, p+ 2 ) and (p+l, p+2)

i+ 1 
I :(r, i) 1 < r < i

1 j--(r, i) i < r< p

0 otherwise

Each of the trees in this family satisfies xl,+ = 1, and has the form

1 p+l p+I P+ P-{1, }

= 2,.p

Finally, define the tree

1 (1, p+1)

x t+ 2  1 = (r,p+2) 2<r<p+l

0 otherwise
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which also satisfies xl,P. 1. This tree has all nodes except node 1 attached to node p+2.

Node 1 is attached to node p+l as a leaf. By Lemma 1.1, the total number of P-trees we have

is

MP+ 1  + (p + 2)= mp+

To see that they are linearly independent, let M be the matrix whose columns are the

characteristic vectors of these trees. Let M' be M with row (1, p+l) repeated as row

(1, p+l) * in the position shown below:

Y XmP+ 1  0

eMP+. 1 1 1 1 e 3  1 row (1, p+l)*

0 1 0 0 0 0 0 row (1, p+2)

Mf 0 1 1 1 0 0 1 row (2, p+2)

0 0 1 0 1 0 1 row (3, p+2)

0 0 0 0 0 Ip.3 ep. 3

o 0 0 1 1 e 3  1 row (p+l, p+ 2 )

Note that M' and M have the same column rank. Each of the columns of Y is a P-tree of K

which contains node p+l, thus it is also a spanning tree of p + 1 nodes and hence the columns

of Y contain p l's. By construction, each of the columns of the submatrix XmP+ contains

p - 1 l's. So, if we multiply row (1, p+I)* by p and subtract from it each of the first

mP+, rows, we get the resulting matrix
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Y XmP+ 1  0

0 1 1 1 1 eT 3  p row (1, p+1)

0 1 0 0 0 0 0 row (1, p+2)

0 1 1 1 0 0 1 row (2, p+ 2 )

0 0 1 0 1 0 1 row (3, p+2)

0 0 0 0 0 Ip.3 ep. 3

o 0 0 1 1 e1 row (p+1, p+2)

Subtracting row (1, p+ 2 ) from rows (1, p+l) * and (2, p+ 2 ), and subtracting row (p+l, p+ 2 )

from row (1, p+l)* gives us the matrix

Y XmP+ 1  0

o 0 1 0 0 0 p - 1 row (1, p+1)*

0 1 0 0 0 0 0 row (1, p+2)

0 0 1 1 0 0 1 row (2, p+2)

0 0 1 0 1 0 1 row (3, p+2)

0 0 0 0 0 Ip.3 ep. 3

0 0 0 1 1 e1 row (p+l, p+2)

Finally, subtract row (1, p+l) I from rows (2, p+ 2 ) and (3, p+ 2 ) and then subtract these two

rows and the rows containing the submatrix Ip.3 from row (p+ 1, p+ 2 ) to get
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Y X X. +I 0

0 0 1 0 0 0 p - I row (1, p+1)*

0 I 1 0 0 0 0 0 row (1, p+2)

0 0 0 1 0 0 2 - p row (2, p+2)

0 0 0 0 1 0 2 -p row (3, p+2)

0 0 0 0 0 Ip-3 e. 3

0 0 0 0 0 0 p row (p+l, p+2)

Thus, M has linearly independent columns by Proposition 1.5. and the raP+ 2 P-trees that we

constructed are linearly independent.

Now, assume that there exist m, linearly independent P-trees satisfying x1,l = 1 for

some I > p + 2, and look at K,+, .

p+l 1+1

K1  i

Each P-tree of K, is also a P-tree of K1+ 1 , so let Y be the matrix whose columns are the

characteristic vectors of m, linearly independent P-trees of K, satisfying xl,+1+ = 1. Next,

define I additional trees of KI+1 beginning with

1 j = (1, p1+l), (2, p+l), (2, 1+1) and (3, 1+1)

1x I j= (3, r) 4 < r< p

0 otherwise
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This tree satisfies x,+ 1 - 1 and has the form

1 p+l 2 1+1 3 P- {1, 2, 3}

For i- 2, ... p define the trees

1 j - (1, p+l), (1, 1+1) and (i, 1+1)

[1 j =(r,p+1) 2<r<i

1 j--(r, p+1) i < r <p

L 0 otherwise

and for i :p + 2 ... idefine

j = (1, p+l), (1, 1+1), (2, p+l) and (i, 1+1)

. (r, i) 3 < r < i

{1 j=(i,r) i<r<p

0 otherwise

These two families of trees satisfy the equality and have the forms

: 1+1 1 p+l P 1, i)

i--2, ..... p

and

2 p+l 1 1+1 i P-{1,2}

i = p + 2, ... , I
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Finally, define

r 1 j - (1, p+l) and (p+l, 1+1)

xJ,= 1 j= (r, 1+1) 2< r< p

0 otherwise

which has nodes 2, ..., p+l connected to node 1+1 and node 1 attached to node p+l as a leaf.

This gives us a total of m,+ 1 P-trees satisfying xP+1 = 1. To see that these trees are linearly

independent consider the matrix whose columns are the characteristic vectors of these trees.

Y X . v
0 1 0 1 1 1- e" 3  eT 0 row (1, 1+ 1)

0 I 0 e1'1 /-(p-+-)

0 1 1 01 0 0 1

M= 0 1 0 1 0 0 1
L

0 0 0 0 I pI3 0 ep. 3

0 0 0 0 0 0 1 row (p+1, 1+1)

0 0 0 0I 0 I'.(p+l) 0

M has linearly independent columns by Proposition 1.5. Thus, by the principle of induction,

Xa < 1 induces a facet of Tp,, afor p _> 3 and n > p + 2 and all arcs a E (P, S). 0

Pronosition J5: For p > 3 and n > p + 3, the inequality Xa < 1 induces a facet of Tp,, for

all arcs a E A(S).

Proof: Let p _> 3 be given. Without loss of generality, let a = (p+ 1, p+2). We will proceed

by induction on n. For n = p + 3, look at Kp+ 3.
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P+1p3

Kp+ 2  p+2

By Proposition 4.13, there exist mp+ 2 - 1 linearly independent P-trees of Kp+ 2 satisfying

=plP2-' 1. These trees are also P-trees of KP3 Let Y be the matrix whose columns are

the characteristic vectors of these trees. Define the following two P-trees.

1 j = (1, p + 3 ) and (p+l1, p + 2 )

1i = (2, p + 3 ) and (2, p +l)
x.

I j =(r, p+2) 3 <r< p

0 therwise

and
1 j = (1, p±+2 ), (2, p +lI) and (p+l1, p + 2 )

1 j= (2, p+ 3 ) and (3, p+ 3 )
2

0 therwise

Both of these trees satisfy xp,, 1 + 2 =1. They have the forms

p+ 3  2 1~ p2 P{1, 21

x2



103

Now, for i = 2, ... , p define the p - 1 P-trees

1 j = (1, p+ 2 ) and (p+l, p+ 2 )

1 j = (i, p+3) and (p+l, p+ 3 )

i+ 1 = 1 = (r, i) 2 < r<

1 j=(i,r) i<r<p

0 otherwise

Each of the trees in this family satisfies xp+l,p+ = 1, and has the form

I p+2 p+l p+3 i P-{1, i}

i 2,. . p

Finally, define the two trees

= (1, p+ 2 ) and (p+l, p+ 2 )

x.+  ( j= (r,p+3 ) 2 < r < p+1

otherwise

and

1 = (1, p+l) (p+l, p+ 2 ) and (p+2. p+ 3 )

xp+ 3  1 j=(r,p+3 ) 2 < r< p+1

0 otherwise

which also satisfy x,,+1 - 1. These trees have the forms
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1 p+2 p+l p+3 P-{l}

xp+
2

1 p+1 p+ 2  p+3 P f{}

x P+
3

The total number of P-trees we have is

m +2 + (p + 3) =M+ 3

To see that they are linearly independent, let M be the matrix whose columns are the

characteristic vectors of these trees, and let M1 be M with row mp+2 repeated as row%

(p+l, p+2)*. M1 has the form

Y
YX .. + 2

eT I 1 1 1 eT 1 1 (p+l, p+2)*
Mp+2-1

0 1 0 0 0 0 0 0 (1, p+ 3 )

0 1 1 1 0 0 1 1 (2, p+3)

0 0 1 0 1 0 1 1 (3 , p+ 3 )

0 1 0 0 0 0 Ip.3 ep. 3  ep. 3

0 1 0 0 1 1 e 3  1 0 (p+l, j)+3)

0 0 0 0 0 0 0 1 (p+2, P+:
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and has the same column rank as M. Each of the columns of Y is a P-tree of K +, which

contains nodes p+l and p+2, thus it is also a spanning tree of p + 2 nodes and hence the

columns of Y contain p + 1 l's. By construction, each of the columns of the submatrix

X m+ 2, except the last two, contain p l's. The last two columns of Xm+ 2 contain exactly two

l's. So, multiply row (p+l, p+2)* by p + 1 and subtract from it each of the rows abov it.

The resulting matrix is

Y Xm~p+2

p 1 1 1 1 et 3  p- 1 p- I (p+Il,p+2)*

0 1 0 0 0 0 0 0 (1, p+ 3 )

0 1 1 1 0 0 1 1 (2, p+ 3 )

0 0 1 0 1 0 1 1 (3 , p+ 3 )

0 0 0 0 0 Ip.3 ep. 3  ep. 3

0 0 0 1 1 ep 3  1 0 (p+l, 1,+3)

0 0 0 0 0 0 0 1 (p+ 2. p+ 3 )

t*

Subtract row (1, p+3) from rows (p+l, p+ 2 )* and (2, p+ 3 ), and subtract row (p+ l, p+ 3 )

from row (p+l, p+2)* to get the matrix

YY X M X + 2

0 '0 1 0 0 0 p- 2 p- I (p+1,p+2)*

0 1 0 0 0 0 0 0 (1, p+3)

0 0 1 1 0 0 1 1 (2, p+ 3 )

0 0 1 0 1 0 1 1 (3 , p+ 3 )

0 0 0 0 0 Ip.3 ep. 3  ep. 3

0 0 0 1 1 eT 3  1 0 (p+l, p+3)

0 0 0 0 0 0 0 1 (p+ 2 . p+ 3)
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Finally, subtract row (p+ 1, p+2)* from rows (2, p+3) and (3, p+ 3 ), and then subtract -these

two rows and the rows containing the submatrix 1p.3 from row (p+ 1, p+ 3 ) to get

Y X ._p+ 2

0 0 1 0 0 0 p- 2 p- I (p+l,p+2)*

0 1 0 0 0 0 0 0 (1, p+ 3 )

0 0 0 1 0 0 3- p 2- p (2 , p+ 3 )

0 10 0 0 1 0 3-p 2 - p (3 , p+ 3 )

0 0 0 0 0 Ip.3 ep. 3  ep. 3

0 0 0 0 0 0 p- 2 p- 1 (p+l,p+ 3 )

0 0 0 0 0 0 0 1 (p+2, p+3)
L

By Proposition 1.5, Mf has linearly independent columns. Thus, the mp+ 3 P-trees that we

constructed are linearly independent.

Now, assume that there exist m, linearly independent P-trees satisfying Xp+l,+ 2 =1

for some I > p + 3, and look at K,+l.

Ell
p+l 1+1

K, 1
K I  I/

Each P-tree of K, is also a P-tree of KI+ I. Let Y be the matrix whose columns are the

characteristic vectors of these m, trees. Next, define I additional trees of K, beginning with
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1 j = (1, p+ 2 ), (2, 1+1) and (3, 1+1)

1  j = (p+l, p+ 2 ) and (2, p+l)
jt1 =(3, r) 4 <r p

0 otherwise

This tree satisfies the desired equality and has the form

For i- 2,..., p define the trees

1 .j = (1, p+ 2 ) and (p+l, p+ 2 )

1 j = (1, 1+1) and (i, 1+1)

x 1 j=(r, p+1) 2 < r<

1 j=(r,p+1) :< r< p

0 otherwise

and for i p + 3 ... define

1 j = (1, p+2), (1, 1+1) and (i, 1+1)

1 j = (p+l, p+2) and (2, p+l)

I[ j =(r, i) 3< r< p

0 otherwise

These two families of trees satisfy the desired equality and have the forms
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I 1+1 1 p+2 p+l P-{1, i}

i = 2, .... p

and

2 +l n+2 1 tl i P - {1, 2}

i = p + 3, ..., I

Finally, define the two trees

1 . = (1, p+ 2 ) and (p+l, p+ 2 )

X0 1 j = (r, 1+1) 2 < r < p+l

0 otherwise

and

1 j = (1, p+l), (p+l, p+ 2 ), and (p+ 2 , 1+1)

j I j=(r,1+1) 2<r <p

0 otherwise

These trees satisfy x+I,P+2 = 1, and have the forms

1 p+2 p+l 1+1 P f{1}

xl-1

1 +l p +2 1+1 p- {)

xI



109

To see that these trees are linearly independent, consider the matrix whose columns are the

characteristic vectors of these trees. This matrix has the form

Y XMI

O to1 1 T T0 1 e, 3  eT(+ 2 ) 0 0 (1, 1+ 1)
I

0 1 1 0 I 0 0 1 1 (2, 1+1)

0 1 0 1 i 0 0 1 1 (3, 1+1)L

0 0 0 0 Ip.3 0 e,. 3  e,. 3

0 0 0 0 I 0 0 1 0 (p+l, l+1)

0 0 0 0 I 0 0 0 1 (p+ 2 , 1+1)

0 0 0 0 0 Il(P+2) 0 0

Clearly the matrix has linearly independent columns by Proposition 1.5. Thus, by the principle

of induction, the upper-bound Xa < 1 induces a facet of Tp,, for p > 3 and n > p + 2 and all

arcs a E (P, S). 0

4.3 Cut-Set Inegualities

If (X, X) is a cut in K, which separates P, i.e. X n P 0 0 and X n P 0 0, then the

inequality

Xa a> 1 (4.1)
aE(X,X)

is clearly valid for Tp,.. In fact, if (X, X) does not separate P, the inequality is not valid, since

any spanning tree of P (which uses no Steiner nodes) will violate it. As in the case of spanning

trees, general cuts will not induce facets of T,,. Only cuts which satisfy the conditions of the
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next two propositions induce facets.

Pronosition 4.1: If p 2 3 and n > p +1, and if (X,X) is a cut in K, satisfying

1) lxI = 1 or lXI = 1

2) X nP O 0 andXn P #0

then inequality (4.1) induces a facet of Tp.n.

Proof: Let p > 3 be given. Without loss of generality, let X = {1}. We will proceed by

induction on n. For n = p + 1 we can view Kp+, as:

XX

2

p+ 1

P
Kp

By Proposition 2.8, there exists a set of mp- I linearly independent spanning trees of Kp

satisfying

Z xa l.
aE(x,X-{P+})

Each of these spanning trees is a P-tree of K,+, which satisfies (4.1) at equality. Let Y be the

matrix whose columns are the characteristic vectors of these trees. Now define p - I addition al
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P-trees as follows. For i = 2, ... , p define

1 j = (1, p+l) and (i, p+l)

-I 1 j (r,i) 2 < r<

1 =r) i< r<p

0 otherwise

These trees satisfy (4.1) at equality and have the form

p+l P - 1, i}

Define the two trees

1 j=(r,p+1) 1 < r< p

{ 0 otherwise

and

1 = (1, 2)

xp+1 =  j =(r, p+1) 2 < r < p

0 otherwise

Clearly, these two trees also satisfy (4.1) at equality and have the form

P 1

p+l 1_2l. I P 1,2)

p >

xp x p+4 1
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We now have

mp- 1 + (p + 1)- +

P-trees satisfying (4.1) at equality. All that remains to be shown is that these trees are affinely

independent. Let M be the matrix whose columns are the characteristic vectors of these trees

and look at

Y XmP 0 v

0 e T 1 0 row (1, p+l)
M=

0 'p-1  ep.1  ep.1

TT 1 1

The columns of Y each contair p - I l's, while the columns of Xmp each contain p - 2 l's.

The vector v contains e'actly one 1. If we subtract each of the rows of the matrix, except row

(1, p+l), from (p - 1) times the last row, we get the matrix

Y I XmP 0 v

T 1 0
oTep-i 1 0

L---------_ --
0Ilp- ep. 1  ep.1

0 0 0 I -I

Since p > 3, the middle diagonal block has linearly independent columns by Lemma 4.1. Thus,

M has linearly independent columns by Proposition 1.5 and, hence, the P-trees which we

constructed are affinely independent.
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We can view K, 1 as:

XX

I. P-

1+1P++

K1

Assume that there exist m, affinely independent P-trees of K, satisfying

E Xa-.
a E (X,,-{1+1))

Each of these trees is a P-tree of KI+, satisfying (4.1) at equality. Let Y be the matrix whose

columns are the characteristic vectors of these trees. Now, define I additional P-trees as follows.

First, define

x I. j=(r,1+l) 1 < r< p

j 0 otherwise

Then, for i = 2, ... , p define

1 j = (1, 1+1) and (i, 1+1)

(r, i) 2 < r <

j j(i, r) i< r < p

0 otherwise
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Finally, for i = p + 1, ... , I define

(1, 1+1) and (i, 1+1)

x -- j(r,i) 2 < r < p

0 otherwise

Each of these i trees satisfies (4.1) at equality. The forms of these trees are shown below.

P1.

p~r

xi xi , i = 2,...

1+1 P - fl}

xi, - p + 1 ..

We can see that these P-trees are affinely independent by looking at the matrix whose columns

are their characteristic vectors.

Y I Xm

T- T
0 1 eT ' e

P-- I -

0 e, 1  Ip'1 0

0 0 0 I- p
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Since p 2! 3, this matrix has affinely independent columns by Lemma 4.1 and Proposition 1.6.

Thus, the m1+ 1 P-trees that we constructed are affinely independent, and by the principle of

induction, (4.1) induces a facet of Tpn for p 2! 3, n > p + 1, and all cuts (X, X) satisfying

properties 1 and 2 of the theorem. 0

To prove the next proposition we will need the following lemma.

Lemma 4.17: For p > 4 and n = p + 1 there exist rp+, - 1 linearly independent P-trees

satisfying (4.1) at equality for any cut (X,X) satisfying 1 <IX n P1 < P - 1.

Proof: Let p > 4 be given. Without loss of generality, let X = {1, ..., k} and X -

{k+1, ..., p, p+l} for some k satisfying 2 < k < p - 2. We can view KP+ 1 as:

X X

X X - {p+1}

Kp

*p+ 1

By the proof of Proposition 2.10 we know that there exist mp - 2 linearly independent spanning

trees of Kp satisfying

S xa l.
aE(X,Y-fp+l))

Each of these trees is a P-tree of Kp+ 1 satisfying (4.1) at equality. If we rearrange the

components of the vectors so that the first mk components correspond to the arcs in A(X), the
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next k(p - k) to the arcs in (X,X), and the final mp.k to the arcs in A(X - {p+ 1}), then- by

the proof of Proposition 2.10 we know that the matrix whose columns are the mp - 2 spanning

trees of Kp has the form:

Y y1 Y1

T T
eMk 0 emp. k -I

0 Ik(p.k). 0

Z I  ZI  ZI

where the columns of Y are the characteristic vectors of a set of mk spanning trees of

G(X, A(X)) and the columns of Z are the characteristic vectors of a set of spanning trees of

G(X - {p+11, A(X - {p+1})). Z' is Z with the first column deleted and Z' has all columns

equal to z'. By the proof of Proposition 2.1 there exists a set of mp.k linearly independent

spanning trees of G(X - {p+ I}, A(X - {p+ 11)) the matrix of whose characteristic vectors has

the form

0 Q Q1

Z --- I emp-k-i 0

ep--2 0 Ipek. 1
Q is the matrix whose columns are the characteristic vectors of mp-k.i linearly indepenent

spanning trees of G(X - {p, p+1}, A(X - {p, p+1)) and Q 1 is the matrix that that has every

column equal to q'. The first vector z' represents the tree that has nodes k+ 1 thru p-I

connected to node p as leaves. Now define p + 1 additional P-trees of Kp+- as follows. First,

define
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y' E EA(X)

I j= (k, p)

XjI I (j p+l) k I<r~

0 otherwise

Tree xi satisfies (4.1) at equality and has the form

k p p -p, p+}

y1

For i 1,., k define I j . E A(X)
1I = (i, p +1) and (p, p +)

zj j E A(K - {p+l})

o0 otherwise

These k P-trees also satisfy (4.1) at equality, and have the forms:

For i k + 1, .. ,p I define IY! E A(X)
1 j=(1, p+l), (t, p+1) and (p, p+1)

=ji I r p) k+1I < r < p - ,r

0 otherwise
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These trees have the form

I p+l p'-- {i, p, P+)

yl

and satisfy (4.1) at equality. Note that in the components corresponding to the arcs in

A(X - {p+ 1)) the characteristic vectors of these trees are z' with the component representing

arc (i, p) set to zero. Let v' be the vector composed of the components of the characteristic

vector of xi corresponding to these arcs. Finally, define the tree

y j E A(X)

1 j = (1, p+l) and (k+1, p+l)
; "-I z i E A(XC - {p+l})

0 otherwise

This tree has the form

1 p+l k+1

y 1

and clearly satisfies (4.1) at equality. To show that our (inp - 2) + (p +1) = (m),+, - 1)

trees are linearly independent, consider the matrix whose columns are their characteristic

vectors.
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y yl yl yl yl yl y1 yl y1 yl

eT k  0 0 eM.k. 0 0 0 0 0 0 (1, k+ 1)

0 Ik(p.k)-2 0 0 0 0 0 0 0 0

ZI ZI zI Z, 0 zI  Z1  vI VI zI

o 0 1 0 1 0 0 0 0 0 (k, p)

0 0 0 0 0 1 0 1 eTk 2  p+l)

o 0 0 0 0 0 Ik.i 0 0 0 (k+1, P+1)

0 0 0 0 1 0 0 1 0 1

0 0 0 0 e.k.2 0 0 0 Ip-k.2 0
T  T ~

S 0 0 1 1 eI -k-2 0 (p, p+I)

Note that we have moved row (k, p) below the rows corresponding to the other arcs in

A(X - {p+l)). Subtract row (1, p+l) and the rows containing the submatrix Ik.1 from row

(p, p+l). This gives us the matrix

y Y1 yl Y1' y1 y y1 yI y1 yI

0 0 empk. 1  0 0 0 0 0 0 (1, k+1)

0 k(P.k)-2 0 0 0 0 0 0 0 0

ZI ZI zI ZI 0 zI  ZI vI Vf zi

0 0 1 0 1 0 0 0 0 0 (k, p)

o 0 0 0 -0 1 0 1 ek 2  (1, p+l)

0 0 0 0 0 0 'k-i 0 0 0 (k+l, p+1)

0 0 0 0 1 0 0 1 0 1

0 0 0 0 Ie,.k.2  0 0 0 lp-k2 0

0 0 0 0 1 0 0 0 0 -1 (p, p+l)
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Add the last column to the column corresponding to P-tree x1, then subtract the columns

containing the submatrix Ip-k. 2 from column x1. The resulting matrix is

Y Y1  y y1 ay1  yI Y1 y1  y1 y1

eVT  0 0 eT .. 0 0 0 0 0 0 (1, +)

0 Ik(p.k)-2 0 0 0 0 0 0 0 0

ZI ZI  zI  ZI u zI  ZI  v I  VI zI

0 0 1 0 1 0 0 0 0 0 (k, p)

o o 0 0 3+k-p 1 0 1 eTk.2 1 (1, p+1)

0 0 0 0 0 0 Itk- 0 0 0 (k+ 1, p+ 1)

0 0 0 0 2 0 0 1 0 1

0 o 0 0 I 0 0 0 0 Ip.k.2 0

0 0 0 0 0 0 0 0 0 -1 (p, p+l)

where a =4 + k - p and u =z - V'ep& 2.. Subtract 2 times the column containing v1

from x1 , then add (p - k - 1) times x2 to x1. Finally, subtract column x1 from the other

column which contains a 1 in row (k, p). The resulting matrix is
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y y 1  0 y 1  yl y1 y1 y y1 y I

T Te.k 0 0 em ,i. 0 0 0 0 0 0 (1, k+1)

0 Ik(p-k)-2 0 0 0 0 0 0 0 0

ZI zi 1 z - w Zf w zI ZI vI  V/ zI

0 0 0 0 I1 0 0 0 0 0 (k, p)

0 0 0 0 0 1 0 1 eTk 2  1 (1,p+l)

0 0 0 0 0 0 Ik. 0 0 0 (k+1, p+1)

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 IP-k-2 0

0 0 0 0 0 0 0 0 0 -I (p, p+l)

where w = (p - k)zl - Vlep-k. 2 - 2v. This matrix will have linearly independent columns by

Proposition 1.5 if we can show that the submatrix

Y V'1  0 y 1

eT 0 0 Teemp I-0

0 1k(p-k)-2 0 0

Z1 ZI  z 1  w Z

has full column rank. Use the submatrix Ik(p-k).2 to clear the submatrices Y 1 and Z1. Then

subtract the first column from the columns containing the submatrix Y 1. The resulting matrix
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Y 1 0 0 0

ek 0 0 0

0 ik(p-k)-2 0 0

Z1  0 I zI -w Z' - Z1

has linearly independent columns by Corollary 1.5.1 if the submatrix [ zI - w ZI- Z

has linearly independent columns. The first column of the submatrix is

z-w -  (1 - p + k)zl + Vlepk 2 + 2vI

Thus,

0

zi - w -1 (k+l1, p)

0

So,

300

Szi - w Z' - -- -1 0 -e "T -p. 2  (k+ 1 p),

0 -E'l Ip-k-2  - E 2

where E1 is the (p - k - 2) x mp-k.i matrix of l's and E 2 is the (p - k - 2) x (p k- - 2

matrix of l's. Subtract the first and second columns from each of the columns in the suhniatrix

Q1, and rearrange the columns to get the matrix
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Q o 01

0 -1 0

-E l  0 Ip.k.2

which has linearly independent columns by Corollary 1.5.1. Therefore, the ma+l - 1 P-trees

satisfying (4.1) at equality are linearly independent. D

Proposition 4.18: For p _ 4 and n > p + 2, if (X, X) is a cut in K,, satisfying

1)ixfnsI_ l andiX n si _! 1

2) x n Pi > 2andIX n Pi2- 2

then inequality (4.1) induces a facet of Tp,.

Proof: Let p ? 4 be given. Without loss of generality, let X n P = {1 ... , k} and X n P =

{k+ 1, ... , p} for some k satisfying 2 < k < p - 2. We will proceed by induction on n. For

n = p + 2, we can view K + 2 as:

XX

x n P x n P p+2

KP+ 1 P1+l

By Lemma 4.17, there exists a set of , 1 , - 1 linearly independent P-trees of K,+ 1 satisfying
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xal

a E (X,Y-{p+2))

Each of these trees is a P-tree of KP+ 2 satisfying (4.1) at equality. Let Y be the matrix whose

columns are the characteristic vectors of these P-trees and define p + 2 additional P-trees as

follows. For i = 1, ... , k define

1 j = (p, p+ 2 ) and (i, p+ 2 )

=j (1, r) 2 < r < k

1j j (r,p) k+1 < r<p- 1

0 otherwise

These trees have exactly one arc, namely (1, p+ 2 ), in (X, X) and thus satisfy (4.1) at equality.

They have the form

XnP- {I,i} I i p+--2 .p 3z nP - {,}

Fori= k+ 1 ... , p- ldefine

I j = (i, p+ 2 ), (1, p+l) and (p+l, p+ 2 )

I / j=(1, r) 2< r< k

S j= (r, p) k+I < r < p - 1

0 otherwise

Again, only the arc (p+l, p+2) is in the cut (X, X), so these trees satisfy (4.1) at equality.

Their form is shown below.
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XnP-{I > __ P+l x+ n X"P - {i, P}

Finally, define the three P-trees

1 j - (1, p+l) and (k+1, p+ 2 )

1 j = (p, p+ 2 ) and (p+l, p+ 2 )

xjp = 1 j = (1, r) 2< r< k

1 j =(r,p) k+2 < r< p-1

0 otherwise

= (1, p+ 2 ), (p, p+ 2 ) and (k+1, p+ 2 )

xp+  1, 2<r<k

1 j--(r, p) k + 2 < r < p-

0 otherwise

and
1 j = (1, k+l), (p, p+ 2 ) and (k+l, p+ 2 )

x p+ 2 j=(1,r) 2<r<k

I j-(r,p) k+ 2 < r< p-1

0 otherwise

Since each of these trees contains only one arc in the cut (X, X) it is clear that they also satisfy

(4.1) at equality. The forms of these trees is shown below.

x nP-11) I p+1 p+2 p Xn P- p,k-+ 1)

k+I

xP
o
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xfP -{} 1 +2 npXl -kplk+11

xp+
1

xnP-{l} I k+ n+2 p -Xfl- , k+11

xP+2

We now have a total of

MaP+- 1 + (p + 2) = m +2

P-trees that satisfy (4.1) at equality. Let M be the matrix whose columns are the characteristic

vectors of these trees. To see that these trees are affinely independent look at the matrix

I X I x x + 1 x + 2
Y M II xMP+l xP+1 pl MP+l

0 1 0 0 0 0 1 0

0 0 Ik-i 0 0' 0 0 0

0 0 0 1 0 1 1 1

0 0 0 0 Ip-k.2 0 0 0

0 1 eT 0 0 1 1 1 (p, p+ 2 )

0 10 0 1 1k02 (p+l p+ 2 )

eT I eT eT
MI+ 1 k-I p-k-2

Now we note that every column of Y and of X'mp+ represents a P-tree of KP+ 2 with exactly
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one arc in the cut (X, X). If that arc is removed we are left with two trees, one of which spans

the p - k nodes of A(X - {p+ 2 }). This means that each column of the submatrices Y and

X/'M,+1 contain exactly p - k - 1 l's in the rows corresponding to the arcs in this set. The

last three columns of N each contain p - k - 2 l's in these rows. Therefore, multiply the last

row by p - k - 1 and subtract each of the rows corresponding the arcs in A(X - {p+ 2}). The

resulting matrix is

X1m P P+1 P2P+1 P+1 p+ xmP+

0 1 0 0 0 0 1 0

0 i 0 'k-i 0 0 0 0 0

0 0 0 1 0 1 1 1

0 10 0 0 Ipk.2  0 0 0

0 1 e T 0 0 1 1 1 (p, p+ 2 )

0 0 0 1 e T"  1 0 0 (p+l, p+ 2 )P-k-2

0 0 0 0 0 1 1 1

Now subtract row (1, p+2) and the rows containing the submatrix It.1 from row (p, p+ 2 ) and

subtract row (k+1, p+1) and the rows containing the submatrix IP..) from row (p+l, p+ 2 ).

The resulting matrix
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YX'm MJ, XP P+I xP+2P+I x _ p+I M + -

0 1 0 0 0 0 1 0

0 0 Ik-i 0 0 0 0 0

0 0 0 1 0 1 1 1

0 1 0 0 0 Ip-k-2 0 0 0
L

0 0 0 0 0 I 1 0 1 (p, p+ 2 )

0 0 0 0 0 I 0 -1 -1 4-1, p+ 2 )

0 0 0 0 0 1 1 1

satisfies the conditions of Proposition 1.5. Therefore, the mp+ 2 P-trees which we constructed

satisfying (4.1) at equality are affinely independent.

Now, assume that there exist m, affinely independent P-trees of K, .atisfying (4.1) at

equality for some cut (X, X) satisfying the requirements of the proposition and some I > p + 2.

Without loss of generality assume that X n S = {p+l, ... , q} for some q satisfying

p + 1 < q < I - I and place node 1+1 in X. We now look at K +i in the following manner

X

KI DLZ

By the assumption there exists a set of ml affinely independent P-trees of K, satisfying
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Z Xal
a E(X,X-{t+1))

Clearly, these trees are P-trees of Ki+1 satisfying (4.1) at equality. Let Y be the matrix whose

columns are the characteristic vectors of these trees and construct I additional trees as follows.

First, we associate trees with the nodes in X. For i = 1, ... , k define

1 j = (p, 1+1) and (i, 1+1)

I j= (1, r) 2<r<k
xj = 1 j= (p) k+ I <_r_ -

0 otherwise

and for i =p + 1 ... q define

1 j - (1, i), (p, 1+1) and (i, 1+1)

1 j= (1, r) 2 < r < k

1 j= (r,p) k+ 1 < r < p-1

0 otherwise

Each of these trees has only arc (i, 1+1) in (X, X) and hence satisfies (4.1) at equality. Thcsc

trees have the forms

XfnP-{1, 1i} i 1+1 p X P- {p}

x i i - 1, ... , k
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x fnP - toxn - p

x i - 1, ... , q

Next, we construct trees corresponding to the nodes in X. For i = k + 1, .... p - 1 define

1 j = (1, 1+1) and (i, 1+1)

I j1  (1, r) 2 < r < k
xj 1 j (r,p) k+ 1 r<p-1

0 otherwise

and for: = q + 1 ... Idefine

1 j = (p, i), (1, 1+1) and (i, 1+1)

1  j= (1, r) 2 < r < k
xi=

1 j=(r,p) k+ I < r< p-1

0 otherwise

Again each of these trees only have one arc in the cut (X, X) and thus, satisfy (4.1) at equality.

These two groups of trees have the forms

X P - 1 to k +1 , P- {ip

xi i= k+l1 ..... p-1I
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xnP-1 1 + X P- )

xi i = q + 1,

Finally, define

1 j=(1, 1+l)

[1 j (1, r) 2<r<k
xj'= 1 j=(,-+1) k+ 1< <p

10 otherwise

Are (1, 1+1) is the only arc in (X, X), so xp satisfies (4.1) at equality.. This tree has the form

x nP 1 1} > <P

x 
P

We now have a total of m,+, P-trees which satisfy (4.1) at equality. Look at the matrix whose

columns are the characteristic vectors of these trees.

Y X..

0 1 0 e&-k-i 1 0 ej.q (1, 1+1)

0 0 Ik-i 0 0 0 0

M = 0 0 0 lp.k.1 ep.k. 1  0 0
0 1 e T 0 1 e T 0 (p, t+1)

0 0 0 0 0 I.ip 0

0 0 0 0 0 0 'I1e
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Subtract row (1, 1+ 1) and the rows containing the submatrix Ik.i from row (p, 1+ 1), then add

the rows containing the submatrix I -k-i to this same row. The result is the matrix

Y Xm

0 1 0 ek1 1 0 ej (1, 1+1)0~P 1 0 e-.

0 O Ik-i 0 0 0 0

MI = 0 0 0 I 1 k e Pk. 0 0

T Tp +1
0 0 0 0 p-k-I e.P -eq ( 11)

0 0 0 0 0 1q-p 0

0 0 0 0 0 0 It-q

Since 2 < k < p - 2, p - k - 1 > 0 and M' has affinely independent columns by Proposition

1.6. Thus, by the principle of induction, the inequality (4.1) will induce a facet of Tp,n for

p > 4 and n > p + 2. 0

Before moving on to general partitions of the node set, we prove that these cuts are

indeed the only cuts that generate facets.

Pronosition 4,.M If (X, X) separates P and does not satisfy the conditions in either Proposition

4.16 or 4.18, then inequality (4.1) induces a face of Tp,, of dimension at most mn - 2.

Proof If (X, X) is a cut in Kn which separates P, then it must satisfy one of the following

conditions

1) X or X is strictly contained in P, but not equal to P.

2) Both X and X contain elements of P and S.

Case I. Without loss of generality assume X C P. Since (X, X) does not satisfy the

requirements of Proposition 4.16, JXJ > 2. Thus, any P-tree satisfying (4.1) at equality must
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also satisfy the independent equation

Xa = IXI - I

aEA(X)

since the removal of the arc in (X, X) must leave two connected components. Hence, the arcs

within A(X) must span X. Thus, the maximum dimension of a face induced by (4.1) is

U -2.

Cas 2. Since (X, X) does not satisfy the requirements of Proposition 4.18 then without

loss of generality assume IX n Pi = 1. Any P-tree satisfying (4.1) at equality must have the

node in X n P as a leaf. Thus, if we assume that node 1 E X, any P-tree must satisfy the

independent equation

x 1.
jEN-{i)

Thus, the face induced by (4.1) has dimension at most m, - 2. 0

4.4 Inegualities Generated By Partitions of the Node Set of K_

The partitions of N, discussed in Chapter II, that yield facets of Tn,, can be generalized

in the following manner.

Prowosition £.20" Let {V'})=1 be a partition of the node set N of Kn for some k such that

2 < k < p satisfying

1) Iv01 = 1, i = 1, ..... k - 1

2) VnPoo, i= 1, ... , k

Then the inequality
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F, [.V+aEI2 xa k k-i1 (4.2)
"= =i- (VIv)

induces a facet of Tp,n.

Proof: Let k satisfying 2 < k < p be given. Without loss of generality, let V - {i} for
k-i

i = 1, ... , k - 1 and Vk = N - U V i . Consider any P-tree T of K,. By contracting all arcs
i=1

in the set A(Vk) we obtain a spanning tree of Kk, which must have k - 1 arcs. Therefore, T

must have at least k - 1 arcs in the sets (V', Vs). Thus, we see that (4.2) is valid for TP,,, and

all that remains to be shown is that we can construct mn affinely independent P-trees satisfying

(4.2) at equality. To that end we proceed by induction on n. For n = p + 1 we can view

KP+ 1 as

k-IUk v k _ {p+1} •p+i

i=1

Kp

From this picture we see that we can apply Proposition 2.8 to get that there exist m. - 1

lineary independent spanning trees of Kp satisfying (4.2) at equality if we replace Vk with

Vk - {p+ 1}. Each of these trees is clearly a P-tree of Kp+ satisfying (4.2) at equality. Let Y

be the matrix whose columns are the characteristic vectors of these trees and define p + 1

additional P-trees as follows. For i - 1, .. , k - I define

1 . = (i, p+l) and (p, p+l)

I j= (1, r) 2 < r < k - I

1 j (rp) kr<p-l

0 otherwise
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k-1
These trees have k - 2 arcs spanning the k - 1 nodes in U V' and a single arc connecting these

i=1

"spanning subtrees" to Vk , so they satisfy (4.2) at equality. These trees have the form

j=2 - - + •

=1, ..., k- 1

Similarly, for i - k, ... , p - 1 define the trees

1 j = (i, p+1) and (1, p+l)

1  j- (1, r) 2 < r< k-i

' j(r,p) k<r p-1

0 otherwise

By looking at the form of these trees we can see that they also satisfy (4.2) at equality by

having the structure mentioned above.

U p/ -k { i, p, ,+ I)
j=2

=k, ..., p- 1

Finally, define the two trees

I 3 = (1, k)

I j (1, r) 2 < r < k- 1
xP -

I (r,p+l) k < r < p

0 otherwise
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and

xP+  j= (r, p+l) 1 r< p

j 1 0 otherwise

By their construction these two trees satisfy (4.2) at equality and have the forms

Uv ,i1 k p1 ''-fpl
j=2

xp

and

x P+
1

To see that these my+I trees are affinely independent let M be the matrix whose columns are

the characteristic vectors of these trees and consider the matrix

Y XmpP 0

0 1 0 eTk 0 1

0 0 Ik-2 0 0 ek.2

0 0 0 lp-k ep.k ep- k

0 1 eT 2  0 1 1 row (p, p+l)

eT I eT TmeI ek2 ep1k
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Each column of Y is a spanning tree of Kp and thus contains p - 1 l's. Each column of Xlmp

contains p - 2 l's, and the vector xPM. contains k - 1 l's. So we will multiply the last row of

N by -(p - 1) and add each of the first mp rows, the rows containing the submatrix Ip- k and

row (p, p+l) to it. The resulting matrix is

Y XxP 0

0 1 0 eTk 0 1 row (1, p+1)

0 0 Ik-2 0 0 ek-2

0 0 0 It-k ep.k ep.k

0 1 eT2  0 1 1 row (p, p+1)

0 0 0 0 1 2-k

Now subtract row (1, p+l) and the rows containing the submatrix It.k from row (p, p+l) and

then add the rows containing the submatrix Ip k to row (p, p+l). The resulting matrix is

Y XTP xPp 0

0 I 1 0 ePk 0 1 row (1, p+1)

0 1 0 Ik-2 0 0 ek 2

0 0 0 Ip-k ep-k ep.k

0 0 0 0 p-k+l p-2k+2 row (p, p+l)

0 0 0 0 1 2-k

The determinant of the 2 x 2 submatrix in the lower-right corner of M" is (p - k)(I - k),

which is nonzero for 2 < k < p. Hence M" satisfies the requirements of Proposition 1.5 for

having linearly independent columns. Thus, we have constructed ap+, P-trees satisfying (4.2)
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at equality which are affinely independent.

Now assume that there exist m, affinely independent P-trees of K, satisfying (4.2) at

equality for some 1 > p + 1. We can view KI+, as:

k-i
UV Vk _ {1+1} .1+1

K1

P-trees of K, are also P-trees of K,+,' so let Y be the matrix whose columns arm the charac-

teristic vectors of a set of affinely independent P-trees of K, satisfying (4.2) at equality. For

i = 1, ... , k - 1 define

1 j = (i, 1+1) and (p, 1+1)

1  j= (1, r) 2 < r < k-1

S j (r,p) k<r p-1

0 otherwise
These trees have the form

j=2 _

i = 1, ..... k - 1

Clearly, these trees satisfy (4.2) at equality since their construction is identical that of the trees

in the first part of this proof. Now, in a manner which is also similar to the first part of this
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proof, we construct trees for i k , p - 1.

1 j =(1, 1+1), (p, 1+1) and (i, 1+1)

j= (1, r) k < r < p I

o otherwise

and for i = p

1 j=(1, k)

1 = (1, r) 2 < r < k I

j=(rj,1+ 1) k~r(

o otherwise

These trees have the required structure to satisfy (4.2) at equality and they have the formis

= k ... , p I

Finally, for i =p + 1, ... , I define the trees
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r (1, z), (p, 1+1) and (1, 1+1)

I1 j-- (1, r) 2< r< k- I
x il I--)

0 otherwise

which have the form

i = p + 1, ...- 

and satisfy (4.2) at equality. We now have mo+1 P-trees that satisfy (4.2) at equality. To see

that they are affinely independent look at the matrix whose columns are the characteristic

vectors of these trees.

Y Xm

0 'k-i A 0 0

NI = 0 0 Ip-k ep.k 0

T eT I T 10 eT e 1 e17, row (p. 1+1)

0 0 0 0 ItP

where A is the (k- 1) x (p - k) matrix whose first, row is ep-k and all other entries are O's. If

we subtract the rows containing the submatrix 'k-i from row (p, 1+ 1) we get the matrix
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Y Xm

0 'k-i A 0 0

M= 0 0 'p-k ep.k 0

0 0 0 1 el row (p, 1+ 1)

0 0 0 0 11- P

which satisfies the conditions of Proposition 1.6. Thus, the ml+ 1 P-trees we constructed are

affinely independent, and by the principle of induction, the inequality (4.2) induces a facet of

Tp, n for p > 3 and n > p + 1 and partitions of the type specified. 0

j.5 Other Facet-Inducing Ineualities

In Proposition 3.13 we proved that an inequality derived from considering the degrees of

the nodes in any P-tree induced a facet of T 2,,,. We can generalize this result.

Proposition 4.21: For p >_ 3 and n > p + 1, the inequality

2E Xa + Z Xa < 2(p- 1) (4.3)
aEA(P) aE(PS)

induces a facet of Tp,..

Proof: Let p _> 3 be given. If d(i) is the degree of node i in a P-tree, then we see that

Z d(i) = 22Z x + Z Xa
iEP aEA(P) aE(PS)

Now, let T be any P-tree, and let q be the number of nodes in the tree. Then for T we know

that
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2(q - 1) = d(i) + E d(i)
iEP iES

and

E d(i) _ 2(q - p)
iES

since the q - p nodes in S cannot be terminal nodes. Therefore,

21: x. + E x,, = F d~i) = 2(q - 1) - d(i) :5 2(q - 1) - 2(q - p) =2(p -1).
aEA(P) aE(PS) iEP iES

Thus, any P-tree T must satisfy (4.3), hence it is valid for Tp,,. All that we need to prove now

is that we can find m. affinely independent P-trees satisfying (4.3) at equality for any

n > p + 1. We proceed by induction on n. For n = p + 1 we recall that every spanning tree

of P is a P-tree of Kp+ 1 . Further, a spanning tree of P is easily seen to satisfy (4.3) at equality.

By Proposition 2.1, there aye mp linearly independent spanning trees of Kp. Let Y be the

matrix whose columns are the characteristic vectors of these trees and define p additional P-trees

as follows. First define

1 j = (1, 2), (2, p+l) and (3, p+l)

x . =t1 j=(3, r) 4 < r < p

0 otherwise

which has the form

T P+ P -- 1, 2, 3d

Then, for i = 2, .... , p define
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j - (1, p+l) and (i, p+l)

1 j (r, i) 2 < r < i
xj=-

1j j= (i, r) i< <

0 otherwise

This family of trees has the form

I p+l i P - {I, il

i = 2, ..... p

In each of these p P-trees there are two arcs in (P, S), namely those incident to node p+ 1, and

p - 2 arcs in A(P). Thus these trees satisfy (4.3) at equality. Now consider the matrix whose

columns are the characteristic vectors of these rp+, trees. This matrix has the form

0 0 1 1 1 e -

M= 0 1 1 0 0

0 1 0 1 0

0 0 0 0 Ip.3

This matrix clearly has linearly independent columns by Propositon 1.5. Therefore, the P-tres

we constructed are linearly independent.

Now, assume that there exist m, linearlyindependent P-trees satisfying (4.3) at equality

for some 1 > p + 1. We can view K+ 1 as
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1,

1+1

K1

By the assumption there exists a set of m, linearly independent P-trees of K, satisfying

x,+ xa = 2(p- 1)
aEA(P) aE(P,S-{I+i})

These trees are P-trees of K,+, and satisfy (4.3) at equality. Let Y be the matrix whose

columns are the characteristic vectors of these trees and define I additional P-trees in the

following manner. First, let

1 =(1, 2), (2, 1+1) and (3, I-1)

xi I 1 j= (3, r) 4 < r<p

0 otherwise

Then for i = 2. ... , p define

1 j = (1, 1+1) and (i, 1+1)

I j (r, i) 2 < r< 
1 j (i,r) i<r<p

0 otherwise

These trees are the same as the first two sets of trees defined in the first part of the proof. with

node p+ 1 replaced by node 1+ 1. Thus, they satisfy (4.3) at equality. Finally, for 1 = p + I,

.... I define
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( j = (2, i), (1, 1+1) and (i, 1+1)

x I j= (2, r) 3 < r< p

10 otherwise

which have the form

1 1+1 i 2/ P -1{, 21

i = p+ 1, . ....

These trees contain two arcs in (P, S) and p - 2 arcs in A(P) and thus satisfy (4.3) at equality.

The matrix whose columns are the characteristic vectors of these trees has the form

Y Xm
--- L - - - - - - - I_--

0 I 0 1 1 1 eT

M= 0 1 1 0 0

0 1 0 1 1 0-------------- -- ---

0 0 0 0 11-3

Hence by Proposition 1.5 the m+ 1 P-trees satisfying (4.3) at equality are linearly independent,

and by the principle of induction, (4.3) induces a facet of T, for p > 3. 0



Cb ater V

Conclusions and Areas for Further Research

5.1 Conclusions

In this dissertation we defined a class of polytopes related to the Steiner Tree Problem

on undirected graphs. We then explored inequalities that bounded the components of the char-

acteristic vectors of P-trees and that placed conditions on the number of arcs that pass between

sets of nodes of the graph. In general we found that if n and p are sufficiently large, the upper-

and lower-bound inequalities and inequalities derived from partitions of the node set which

separate P and have only one set containing more that one member induce facets of Tp,n. We

also found an inequality that was derived from the degrees of the nodes in any P-tree that

induced a facet of our polytope.

L2 Areas for Further Research

5.2.1 The Set Covering Problem

One of the ways of attacking a combinatorial problem such as the STG is to develop a

hierarchy of polytopes that properly contain the polytope of interest. Aneja's formulation [1], as

was shown in Chapter I, is that of a set covering problem, and it is easy to see that the polytope

Tp,, is a proper subset of the set covering polytope. It may be possible to lift or otherwise

strengthen the known facets of the set covering polytope in order to generate new facets of the

Steiner tree polytope. This method would parallel the method Balas uses in deriving facets of

the prize-collecting traveling salesman problem [2].
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5.2.2 Development of a Solution Algorithm

Now that we have a general class of facets we may be able to develop an algorithm to

solve the STG that exploits this knowledge.

5.2.3 Generalization to Matroids

Edmonds' complete characterization of T, ,, [14] and Gr6tschel's complete, non-redun-

dant characterization [17] were both derived from results on more general matroids. It would be

worthwhile to attempt to generalize our current results to general matroids and then build on

this foundation using the tools of matroid theory.



Appendix

SoMe Counting Results

One method we used to identify possible strong valid inequalities and facets was to

generate the convex hull of the set of feasible solutions to some small cases of STG. This

required that we generate sets of spanning and P-trees for these problem instances. We

developed the following formulas for counting P-trees in K, as a check on the number of P-trees

we were generating.

First we define some new notation and prove a few elementary lemmas. Let

(p, k) = the number of P-trees containing at most k Steiner nodes

[p, k] = the number of P-trees containing exactly k Steiner nodes.

The first important observation is that if k = 0, then we are counting spanning trees of Kp.

To do this we use Cayley's Theorem [21].

Lemia AL (p, 0) = [P 01 = P.2.

The next relation follows from our notation and gives us a method of counting the

P-trees. Clearly, to count all the possible P-trees which may have as many as k Steiner nodes,

we need to count all possible trees that have exactly i Steiner nodes for each value of i < k.

Since there are (I) ways to chose the i Steiner nodes from the k possibilities, the total number

of P-trees containing exactly a of k possible Steiner nodes is (I)[P, i]. The total number of

P-trees is given by the next result.

k '
LemmaA,2, (p, k) k ~ )[P' j.

S=0
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Most of our counting will be done inductively. We will determine a number for [p, k] by

determining a number for [p, k - 1] and then adding another Steiner node to the tree. We look

at the types of trees that can result, and then find some convenient way to break the tree into a

series of chains of nodes. To that end, the following observation is quite helpful.

Lemma A.3: The number of ways to divide k Steiner nodes into d chains, some of which may

be empty, is

k (k + d 1).

Proof: Consider the following combinatorial problem: find the number of distinct ways to put k

numbered white balls and d - 1 identical black balls into a row of k + d - 1 slots. This

problem is identical to the problem at hand. The k numbered white balls correspond to the

Steiner nodes, and the black balls serve to form the d partitions. There are (k + d 1) ys(d - T ay

to choose the slots for the black balls, and then k! ways to place the numbered white balls into

the remaining k slots. Hence, the number of ways to divide k Steiner nodes into d chains is

k!(k+ d- 1) o

We next consider some counting results for p = 2, 3 and 4.

A. 1Resulits for p = 2

When IP = 2, every P-tree in K, is a path from node 1 to node 2. (Recall, if 1PI = 2, then by

assumption P = {1, 2}) There is a single P-tree if k = 0, so (2, 0) = [2, 0] = 1. For k > 1,

all the Steiner nodes are in a single chain between the two leaves. There are k! ways to do this,

which leads to our first result.
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Lemma A.4. [2, k] = k!.

We now use Lemma A.2 to develop a relation between (2, k) and (2, k- 1).

Pronosition A.5. (2, k) = k (2, k-i) + 1.

Proof' By Lemma A.2

k

(2, k) E k (k[ 2 , ]
i=0

Applying Lemma A.4 gives us the relation

t (k /:(k) ' ( 1 )"--" --k' 1.- k k - +) 1.

i=0 i=0 "=) "=0

Similarly, we can get

k--I

(2, k - 1) =(k - 1)! ZkA.
j=0

Thus, by substitution

(2, k) = k(2, k - 1) + 1. 0

As it turns out, there is a closed form expression for (2, k).

Proposition A& For k > 1, (2, k) = Lk! eJ.
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Prof. Consider

(2, k) 00 o

i=O i=k+l

Hence

0 < .e -(2, k) = . £ k1 =

i=k~l ,=

Since k > 1, we have that

0 < k! e - (2, k) < 1,

which means

ke - 1 < (2, k) < k! e,

so

(2, k) = LV eJ. 0

A.2 Reults for 2-- 3

When we move to p - 3, the situation is a little more complex. When p = 2, there is

only one type of P-tree, a path between the leaves. In this case, however, there are two types of

trees, paths between two of the terminal nodes, and trees that have all three terminal nodes as

leaves. If k = 0, then we have (3, 0) = [3, 0] = 3, and there are no trees having three leaves.

For k > 1, however, we have the following results

PropositionA.7. [3, k] = (k + 1) [3, k - 1] + 1 (k + 1)!
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Proof: Consider an arbitrary Steiner node, say the kth Steiner node, in a P-tree containing

exactly k Steiner nodes. From Proposition 1.7, d(k) = 2 or d(k) = 3. In the first case, node k

must have been inserted in the middle of an arc of some P-tree containing exactly k - 1 Steiner

nodes. There are [3, k-1] trees of this type, each having 3 + (k - 1) - 1 = k + 1 arcs. So

there are (k + 1)[3, k - 1] P-trees containing k Steiner nodes with d(k) = 2. If d(k) = 3, then

delete node k and consider the three components that remain. Each consists of a chain, possibly

empty, of Steiner nodes and a terminal node. There are k - 1 Steiner nodes in these three

chains, so by Lemma A.3, there are

(k - 1)! (3 + (k- 1) - 1) =(k - 1)! (k + 1) (k + 1)!

possible P-trees in which d(k) = 3. The total number of P-trees containing exactly k Steiner

nodes is

(k + 1)[3, k - 11 + 1 (k + 1)!. 0

Our next result gives a closed form for [3, k].

Proposition A.8 [3, k] = (k + 6) (k + 1)!.

Proof: We prove the result using induction on k. For k = 1, Proposition A.7 tells us

[3, 1] = 2 [3, 01 + 1(2) = 7,
2 -

while the formula gives

(7) 2! = 7.
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Thus, the formula holds for k = 1. Now assume that

[3k - 1]=(k+ )kV

and look at [3, k]. By Proposition A.7

[3, k] = (k + 1) [3, k - 1] + 1(k + 1)!.

Substituting, we get

[3, k] = (k + 1)[(k + 5) M!] + 1k+ 1)! = (k + 1)! (k +~ 6).

Thus, the formula holds for all k > 1 by induction. 0

By using the formulas from Propositions A.8 and A.2 we calculate (3, k) for any value

of k.

A.3 Results for p = 4

As when we moved from two terminals to three, we again increase the number of types

of trees that can occur by moving to four terminals. For p = 4, there are five types of P-trees

which are shown below.

k

(a) k k

(b) (c)
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k h(c) 
(d)

Terminals are designated by a (.), while Steiner nodes are shown as an (o). The lines connect-

ing the nodes indicate chains of Steiner nodes. For k = 0, we have (4, 0) = [4, 0] = 16, while

for k > 1 we have the following result.

Proposition A.9:

[4, k] =(k + 2) [4, k- 1] + 6(k - 1)(k + 2)! + 2(k +2)! + (k + 2)!
4! 3!

(k + 2)[4, k - II + (k + 2) (6k + 46).
4!

Proof: As in the proof of Proposition A.7, each of the terms in the expression comes from

considering the degree of the "kth" Steiner node in a P-tree. These nodes are shown in the

figure above.

If d(k) = 2 (tree types a and b), then the node was inserted in the middle of an arc of a

P-tree containing exactly k - 1 Steiner nodes. There are [4, k - 1] such trees with

(k - 1) + 4 - 1 = k + 2 arcs each. Thus, the total number of trees for which d(k) = 2 is

(k + 2) [4, k - 11.

If d(k) = 3, then there are two type of P-trees that could contain k. If the tree is of type

(c), then deleting k will leave us with k - I Steiner nodes divided into three chains, one of

which contains two terminal nodes. The number of these trees is determined both by possible

arrangements of Steiner nodes and by arrangements of terminal nodes. The terminal node
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arrangements are determined by which two of the four terminals are in the chain containing two

terminals, and their order. There are (4) = 6 ways to choose the two terminals, and then 2

ways to arrange them. For each of these 12 situations there are k - 1 Steiner nodes divided

among four chains, so the total number of trees of type (c) is

12 (k - 1)! k + 2) = 2(k + 2)!.

If d(k) = 3 and the tree is of type (d), then deleting node k leaves three components,

one of which is a "Y" containing a "splitting" Steiner node h and two terminal nodes. There are

(k - 1) ways to choose h and (2) = 6 ways to choose the two terminal nodes in the "Y". The

remaining k - 2 Steiner nodes are divided among five chains. (Three in the "Y', and one in

each of the other two components) Thus, there are

6(k _ 1)(k + 2)! (k .. 6(k - 1)(k + 2)!
6(\ )k ) 4] 4!

of this type of P-tree.

Finally, if d(k) = 4 (tree type e), then deleting k from the tree leaves us with k -

Steiner nodes divided among 4 chains. The number of trees of this type is

(k_ )(k + 2)_ (k + 2)!

Adding these four expressions together gives us the desired total of P-trees containing exactly k

Steiner nodes. 0

As in the case of p = 3 we can obtain a closed form expression for [4, k].

Proposition A.10: [4, k] - (k + 2)! (192 + 49k + 3k).4! (9 9 k)
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Proof. As in the proof of Proposition A.8, we will proceed by induction on k. For k = 1, we

can use Proposition A.9 to get

[4, 1] = 3[4, 0] + 1!(52) = 61.

By the above formula we get

[4, 1 = !(192 + 49 + 3) = 61,

showing that the result holds for k = 1. Now assume that the formula holds for k - 1, and

look at [4, k]. By proposition A.9

[4, k] = (k + 2)[4, k - 1] + (k + 2) (6k+46)

Substituting the formula for [4, k - 1] we get

(k + 1)' ) (k + 2)
[4, k] (k + 2)[k" , 10(192 + 49(k - 1) + 3(k - 1)) + 4 ( + 46)

(k + 2)![(192 + 49k + 3k 2 ) - (6k + 46) + (6k + 46)]
- - !

_(k + 2)! (192 + 49k + 3k 2 ) 
07

-- 4!
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